• Title/Summary/Keyword: Mesh method

Search Result 2,151, Processing Time 0.027 seconds

An Effective mesh smoothing technique for the mesh constructed by the mesh compression technique (격자압축을 이용해 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.331-334
    • /
    • 2003
  • In the finite element simulation of hot forging processes using hexahedron, remeshing of a flash is very difficult. The mesh compression method is a remeshing technique to construct an effective hexahedral mesh. However, because mesh is distorted during the compression procedure or the mesh compression method, mesh smoothing is necessary to improve the mesh Qualify. in this study, several geometric mesh smoothing techniques and a matrix norm optimization technique are applied and compared which is more adaptive to the mesh compression method.

  • PDF

An Effective Mesh Smoothing Technique for the Mesh Constructed by the Mesh Compression Technique (격자압축법을 이용하여 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2003
  • In the rigid-plastic finite element simulation of hot forging processes using hexahedral mesh, remeshing of a flash is important for design and control of the process to obtain desirable defect-free products. The mesh compression method is a remeshing technique which enables the construction of an effective hexahedral mesh in the flash. However, because the mesh is distorted during the compression procedure of the mesh compression method, when it is used in resuming the analysis, it causes discretization error and decreases the conversance rate. Therefore, mesh smoothing is necessary to improve the mesh quality. In this study, several geometric mesh smoothing techniques and optimization techniques are introduced and modified to improve mesh quality. Then, the most adaptive technique is recommended for the mesh compression method.

Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality

  • Itoh, Takayuki;Shimada, Kenji
    • International Journal of CAD/CAM
    • /
    • v.1 no.1
    • /
    • pp.11-21
    • /
    • 2002
  • This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, according to their shape and directionality. It then converts the pairs into quadrilateral elements in order of the scores to form a quadrilateral mesh. Engineering analyses with finite element methods occasionally require a quadrilateral mesh well aligned along the boundary geometry or the directionality of some physical phenomena, such as in the directions of a streamline, shock boundary, or force propagation vectors. The mesh conversion method can control the mesh directionality according to any desired vector fields, and the method can be used with any existing triangular mesh generators.

A Study of Mesh Automatic Generating Method for Cracked Body (균열을 포함한 계의 mesh 자동분할에 관한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • In this paper new mesh generation method is proposed for crack propagation analysis based on the finite element method. The main tool of the method is the Delaunay Triangulation, Transfinete element mapping, and it allows the setting of the arbitrary crack-growth increment and the arbitrary crack direction. It has the form of a subroutine, and it is easily introduced as a subroutine for any mesh generation method which is based on the blocking method.

  • PDF

THE NUMERICAL SOLUTION OF SHALLOW WATER EQUATION BY MOVING MESH METHODS

  • Shin, Suyeon;Hwang, Woonjae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.563-577
    • /
    • 2012
  • This paper presents a moving mesh method for solving the hyperbolic conservation laws. Moving mesh method consists of two independent parts: PDE evolution and mesh- redistribution. We compute numerical solution of shallow water equation by using moving mesh methods. In comparison with computations on a fixed grid, the moving mesh method appears more accurate resolution of discontinuities.

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

Pole Selection Method for Delaunay Triangulation (Delaunay 삼각화 시 Pole 선택 방법)

  • Park, Tae-Jong;Park, Hyeong-Tae;Park, Sang-Chul;Chang, Min-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.422-428
    • /
    • 2007
  • Presented in the paper is a procedure to reconstruct a triangular mesh from a point cloud. Although, the proposed procedure is based on the well-known Voronoi diagram approach, it introduces a selection method of 'Pole' to improve the quality of resulting mesh. To select the appropriate Poles for high quality of Triangular mesh, the patterns that the Poles affect to the mesh quality are carefully analyzed. It is possible to improve the mesh quality by controlling the selection method of 'Pole' in terms of distance limit. The initial mesh obtained by the proposed procedure may include invalid triangles. To relieve this problem, a slicing method is proposed to remove invalid triangles from the initial mesh. At last, correcting technique of normal vectors of generated mesh is introduced.

A Numerical Analysis on Flows Around a Moving Body Using a Mesh Transformation Method (격자변환기법을 이용한 이동물체 주위의 유동해석)

  • Kim, Tae-Gyun;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.593-599
    • /
    • 2001
  • A flow analysis is performed in the present study for the moving body problem by proposing a mesh transformation method for the movement of the body in the fluid medium. Unlike other moving mesh techniques, a mesh itself is not moving but changes its property as time marches in a mesh transformation method. The flow field results are compared with those by other moving mesh technique, and showed good agreements. The movement of a floatable body in the flow field caused by the moving body is also studied in the present study by using a mesh transformation technique and a fluid/structure interaction method.

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

Structure-Preserving Mesh Simplification

  • Chen, Zhuo;Zheng, Xiaobin;Guan, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4463-4482
    • /
    • 2020
  • Mesh model generated from 3D reconstruction usually comes with lots of noise, which challenges the performance and robustness of mesh simplification approaches. To overcome this problem, we present a novel method for mesh simplification which could preserve structure and improve the accuracy. Our algorithm considers both the planar structures and linear features. In the preprocessing step, it automatically detects a set of planar structures through an iterative diffusion approach based on Region Seed Growing algorithm; then robust linear features of the mesh model are extracted by exploiting image information and planar structures jointly; finally we simplify the mesh model with plane constraint QEM and linear feature preserving strategies. The proposed method can overcome the known problem that current simplification methods usually degrade the structural characteristics, especially when the decimation is extreme. Our experimental results demonstrate that the proposed method, compared to other simplification algorithms, can effectively improve the quality of mesh and yield an increased robustness on noisy input mesh.