References
- B. N. Azarenok, S. A. Ivanenko, and T. Tang, Adaptive mesh redistribution method based on Godunov's scheme, Communications in Mathematical Sciences 1 (2003), 152-179. https://doi.org/10.4310/CMS.2003.v1.n1.a10
- B. N. Azarenok and T. Tang, Second-order Godunov-type scheme for reactive flow calculations on moving meshes, Journal of Computational Physics 206 (2005), 48-80. https://doi.org/10.1016/j.jcp.2004.12.002
- Y. Di, R. Li, T. Tang and P.W. Zhang, Moving mesh finite element methods for the incompressible Navier-Stokes equations, AMJ. Sci. Comput. 26 (2005), 1036-1056.
- A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, Journal of Computational Physics, 95 (1991), 450-476. https://doi.org/10.1016/0021-9991(91)90285-S
- J. Felcman and L. Kadrnka, On a Moving Mesh Method Applied to the Shallow Water Equations, Numerical Analysis and Applied Mathematics, International Conference 1 (2010), 195-198.
- A. Harten, J. M. Hyman, Self-adjusting grid methods for one-dimensional hy- perbolic conservation laws, Journal of Computational Physics 50 (1983), 235- 269. https://doi.org/10.1016/0021-9991(83)90066-9
- W. Huang, Y. Ren and R. D. Russell, Moving mesh methods based on moving mesh partial differential equations, Journal of Computational Physics 113 (1994), 279-290. https://doi.org/10.1006/jcph.1994.1135
- R. J. Leveque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002.
- R. Li, T. Tang and P. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, Journal of Computational Physics 170 (2001), 562- 588. https://doi.org/10.1006/jcph.2001.6749
- R. Li, T. Tang and P. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, Journal of Computational Physics 177 (2002), 365-393. https://doi.org/10.1006/jcph.2002.7002
- S. Li, L. Petzold, Moving mesh methods with upwinding schemes for time-dependent PDEs, Journal of Computational Physics 131 (1997), 368-377. https://doi.org/10.1006/jcph.1996.5611
- Y. Ren, R. Ren and Russell, Moving mesh partial differential equations(MMPDES) based on the equidistribution principle, SIAM Journal on Numerical Analysis 31 (1994), 709-730. https://doi.org/10.1137/0731038
- K. Saleri, S. Steinberg, Flux-corrected transport in a moving grid, Journal of Computational Physics 111 (1994), 24-32. https://doi.org/10.1006/jcph.1994.1040
- S. Shin, Adaptive mesh method for conservation laws, Master thesis, Korea University, Seoul, 2006.
- S. Shin and W. Hwang, Numerical solution of burgers' equation by moving mesh methods, Proceedings of the National Institute for Mathematical Sciences 1 (2006), 100-103.
- J. M. Stockie, J. A. Mackenzie, and R. D. Russell, A moving mesh method for one-dimensional hyperbolic conservation laws, SIAM Journal on Scientific Computing 22 (2001), 1791-1813. https://doi.org/10.1137/S1064827599364428
- Z. Tan, Z. Zhang, Y. Huang, and T. Tang, Moving mesh methods with locally varying time steps, Journal of Computational Physics 200 (2004), 347-367. https://doi.org/10.1016/j.jcp.2004.04.007
- H. Tang, Solution of the shallow-water equations using an adaptive moving mesh method, International Journal for Numerical Methods in Fluids 44 (2004), 789-810. https://doi.org/10.1002/fld.681
- H. Tang and T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM Journal on Numerical Analysis 41 (2003), 487-515. https://doi.org/10.1137/S003614290138437X
- H. Z. Tang and T. Tang, Multi-dimensional moving mesh methods for shock computations, Inter. Conf. on Sci. Comput. and PDEs,on the Occasion of S. Osher's 60th birthday, Dec. 12-15, 2002, Hongkong. Contemporary Mathematics 330 (2003), 169-183.
- H. Z. Tang, T. Tang, P. Zhang, An adaptive mesh redistribution method for nonlinear Hamiton-Jacobi equations in two- and three-dimensions, Journal of Computational Physics 188 (2003), 543-572. https://doi.org/10.1016/S0021-9991(03)00192-X
- T. Tang, Moving mesh methods for computational fluid dynamics, Contemporary Mathematics 383 (2005), 141-173. https://doi.org/10.1090/conm/383/07162
- P. A. Zegeling, W. D. de Boer, and H. Z. Tang, Robust and efficient adaptive moving mesh solution of the 2-D Euler equations, Contemporary Mathematics 383 (2005), 375-386. https://doi.org/10.1090/conm/383/07179
- Z. Zhang and T. Tang, An adaptive mesh redistribution algorithm for convection-dominated problems, Communications on pure and Applied Analysis 1 (2002), 341-357. https://doi.org/10.3934/cpaa.2002.1.341
- A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh, Journal of Computational Physics 1 (1967), 149-172.