• Title/Summary/Keyword: Mesh construction

Search Result 231, Processing Time 0.028 seconds

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

Patch-based Cortical Source Modeling for EEG/MEG Distributed Source Imaging: A Simulation Study

  • Im Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.64-72
    • /
    • 2006
  • The present study introduces a new cortical patch-based source model for EEG/MEG cortical source imaging to consider anatomical constraints more precisely. Conventional source models for EEG/MEG cortical source imaging have used coarse cortical surface mesh or sampled small number of vertices from fine surface mesh, and thus they failed to utilize full anatomical information which nowadays we can get with sub-millimeter modeling accuracy. Conventional ones placed a single dipolar source on each cortical patch and estimated its intensity by means of various inverse algorithms; whereas the suggested cortical patch-based model integrates whole cortical area to construct lead field matrix and estimates current density that is assumed to be constant in each cortical patch. We applied the proposed and conventional models to realistic EEG data and compared the results quantitatively. The quantitative comparisons showed that the proposed model can provide more precise spatial descriptions of neuronal source distribution.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

A Broadcast Tree Construction Algorithm for Minimizing Latency in Multi-Rate Wireless Mesh Networks (다중 전송률을 지원하는 무선 메쉬 네트워크에서 지연시간 최소화를 위한 브로드캐스트트리 생성 알고리즘)

  • Kim, Nam-Hee;Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.402-408
    • /
    • 2008
  • This paper considers the problem of minimizing network-wide broadcast latency in multi-rate wireless mesh networks where a node can dynamically adjust its link layer transmission rates to its neighbors. We propose a broadcast algorithm that complements existing broadcast construct algorithm which chooses a multicast node randomly when each candidate node has same metric. We consider the currently accumulated broadcast latency from source node to the each candidate node so far to choose the next broadcast node. The proposed broadcast algorithm for minimizing latency in a multi-rate mesh networks which exploit wireless advantage and the multi-rate nature of the network. Simulation based on current 802.11 parameters shows that proposed MinLink_WCDS algorithm improves overall latency than the previous existing broadcast algorithm.

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

A study on the flexural toughness characteristics of the half-circle type steel fiber reinforced shotcrete (반원형 강섬유보강 숏크리트의 휨인성 특성에 관한 연구)

  • Ji, Young-Hwan;Jeong, Ji-Su;Jeong, Chun-Kyo;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.83-96
    • /
    • 2011
  • Currently, the commonly used tunneling method in Korea is NATM (New Austrian Tunneling Method). This method uses the rock bolt, shotcrete, and supporting system to maintain the strength of original soil and ensures the stability of tunnel by stabilizing the soil using the original strength of the soil in maximum after the excavation. In past years, wire-mesh reinforced shotcrete was common ones but currently steel-fiber reinforced shotcrete is being widely used for the tunnel construction site in Korea to save construction time with the advanced construction technology. The results further indicate that needs for the establishment of not only the specifications for shotcrete but the strengthening methods for the under reinforced shotcrete sections. Therefore, this study deals with the development of a new steel-fiber to ensure the stability of tunnels that are under reinforced with steel-fibers and to overcome the shortcomings of conventional method.

A Experimental Study on the Complex Waterproofing Method of Exposure using PE Textiles of Mesh type and Highly Viscous Urethane (망사형 PE직물과 고점도 우레탄을 이용한 복층형 노출 방수공법에 관한연구)

  • Shao, Xu-Dong;Song, Je-Young;Kim, Young-Suk;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.127-130
    • /
    • 2011
  • The duplex waterproofing construction method has been investigated to improve various problems (how to fix the sheet, breaking, air/water pocket, and cracks caused by different materials) of the existing rooftop exposed waterproofing construction method. By using fiber sheet, Net PE fabric, and thixotropy urethane with high viscosity, the waterproofing construction method is to glue the ground and waterproof course by circular dot. The method is also to construct the waterproof course with high hardness by using waterproof membrane coatings in upper hybrid system. By gluing the ground and the waterproof course by circular dot, the study is expected to be useful to minimize the simultaneous breaking in the waterproof course as tensile stress is buffer in case of the ground crackling. Also, since the waterproofing construction method is good at moving and emitting vapor from the ground, it is considered to be effective to minimize any damages caused by air/water pocket and get loose of the waterproof course.

  • PDF

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF