J. Biomed. Eng. Res : 64-72, 2006

Patch-based Cortical Source Modeling for EEG/MEG
Distributed Source Imaging: A Simulation Study

Chang-Hwan Im

Department of Biomedical Engineering, Yonsei University, Wonju, Korea
(Received March 14, 2006. Accepted April 10, 2006)

Abstract

The present study introduces a new cortical patch-based source model for EEG/MEG cortical source imaging to consider anatomical
constraints more precisely. Conventional source models for EEG/MEG cortical source imaging have used coarse cortical surface mesh or
sampled small number of vertices from fine surface mesh, and thus they failed to utilize full anatomical information which nowadays we can
get with sub-millimeter modeling accuracy. Conventional ones placed a single dipolar source on each cortical patch and estimated its
intensity by means of various inverse algorithms; whereas the suggested cortical patch-based model integrates whole cortical area to
construct lead field matrix and estimates current density that is assumed to be constant in each cortical patch. We applied the proposed and
conventional models to realistic EEG data and compared the results quantitatively. The quantitative comparisons showed that the proposed
model can provide more precise spatial descriptions of neuronal source distribution.
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|, INTRODUCTION

acrocolumns of tens of thousands of synchronously acti-
M vated pyramidal cortical neurons are widely believed to
be the main EEG and MEG generators because of the coherent
distribution of their large dendritic trunks which are locally
oriented in parallel, perpendicularly to the human cerebral cor-
tical surface {1-3]. Nowadays, this physiological phenomenon
has been successfully adopted and widely used as a basic anato-
mical constraint in EEG and MEG source imaging [4-11]. The
source imaging with the anatomical constraint, which has been
often called cortically distributed source model [12], resulted in
elimination of spurious sources [13] as well as reduction of
crosstalk distribution [ 14], compared to classical voxel (volume
pixel) based imaging techniques.

To impose the anatomical constraint, many dipolar sources
should be placed on cortical surface, usually on the interface
between white and gray matter of the cerebral cortex extracted
from structural MRI, which is relatively easier to be extracted
than the other borders. We can further constrain each of these
dipolar sources to be normal to the surface. Then, the strengths
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and/or orientations of the dipolar sources are determined using
linear (L, norm) or nonlinear (L, norm) estimation methods [4,
7]. To determine proper locations and orientations of the scat-
tered sources, the cortical surface is usually tessellated into
huge number of triangular elements, the number of which is
often exceeding several hundreds of thousands. Developments
of medical image processing techniques and high resolution
structural MRI enabled us to get high resolution cortical surface
with sub-millimeter modeling errors [15-17]. Unfortunately,
however, it is computationally inefficient to use whole cortical
surface vertices for the source reconstruction because of the
increased underdetermined relationship between the limited
numbers of measurements and the number of unknown variables
to be reconstructed. To reduce the number of possible source
locations, some people re-sampled the fine mesh to small num-
ber of larger triangles. Then, a unitary equivalent current dipole
was placed in each node of the triangulated surface, with orien-
tation parallel to the averaged normal vectors of the surroun-
ding triangles [18, 19]. However, this kind of re-sampling app-
roaches not only requires one more complex image processing
procedure, but also has large possibility to lose accurate sulci-
gyri structural information of the cortical surface. The other
approach is to use a vertex-sampling process which has been
frequently referred to as a decimation process [20-22]. Small
number of vertices was down-sampled from the cortical surface
as regularly as possible and used for source reconstruction
purpose; whereas the original mesh information was used only



for visualization purpose. This approach is very simple to be
applied, but it has some potential problems. First, the decimated
vertices may not properly represent orientations of neighboring
cortical vertices, especially around highly folded regions. This
may result in significant reconstruction errors because neighbo-
ring dipolar sources with more appropriate orientations can be
overestimated instead of the correct one due to crosstalk effect.
Second, if the distribution of the decimated sources is irregular,
the current intensity estimate can be distorted because density
of the dipolar sources is inversely proportional to the estimated
source intensity. Recently, Lin et al. [23] tackled this problem
by incorporating patch areas in the forward model to yield
estimates of the surface current density instead of dipole ampli-
tudes at the current locations as well as adopting loose orienta-
tion constraint (LOC), which allows some variation of the current
direction from the average normal. Their results showed that
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the use of current density and LOC can improve overall accu-
racy of the source estimates.

In the present study, we have proposed an alternative source
model to easily solve the problems of wrong orientation and
irregular patch areas. Our approach does not use a single dipolar
source that represents its neighboring vertices but uses all
cortical vertices included in many small patches to construct
lead field matrix. Since the constructed lead ficld matrix contains
orientation and area information of all cortical vertices, the
problems of the conventional approaches can be nicely solved.

[I. METHODS

A. Conventional Source Model

As briefly described in the previous section, conventional
source model has utilized reduced number of dipolar sources
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Fig. 1. Anexample of tessellated cortical surface and decimated sources: (a) cortical surface segmented and tessellated from an MRI T1 images (MN! standard
brain}; (b) original and decimated cortical vertices. 432,654 original vertices were reduced to 7,866 source positions; (¢} area-of-influence around a
decimated source (red vector). The orientation was determined by the vector sum of all vertices inside the patch.
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Conventional Model

Variable—Dipole Intensity @,
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Fig. 2. Conceptual comparison between conventionatl and new source models: (a) conventional model uses a single dipolar source in a cortical patch to evaluate
lead field matrix; (b) proposed model uses all vertices inside the cortical patch to evaluate the lead field matrix. Each vertex in the patch has its own unit

normal vector Ny = {Nam, Nam, Nam) and virtual area vm, wherem=1,--- k

which were decimated from fine cortical surface structure.
Figs. 1(a) and (b) show an example of the tessellated cortical
surface and decimated source positions, in which 432,654
original vertices were reduced to 7,866 source positions. As
seen in Fig. 1(c), a decimated vertex cannot properly represent
orientations of its neighboring vertices, even when the dipole
vector was determined by summing all neighboring vectors.
We then evaluated the areas of patches and found that the size
and shape of each patch are highly irregular!) [23]. Thus, to use

single dipolar sources to represent high resolution anatomical

images may cause substantial errors in both forward calcula-
tion and inverse estimation of bioelectromagnetic sources.

The variable that has been used for the conventional source
model is the moment intensity of each dipolar source when
orientation constraint is imposed. Then, the relation between
the dipole intensity and the measured data can be expressed
according to the following system:

x=AQ+n (1

where x is a column vector gathering the measurements on
N, sensors at a given time instant; @ is a column vector made
of the N corresponding dipole intensities; A isthe N,~N lead
field matrix; n is a perturbation or noise vector. The lead field
A ;; is defined as electromagnetic quantity of jth sensor induced
by ith dipolar source with unit intensity. Among various for-
ward calculation methods, in this study, boundary element

1) The largest patch area is about 2 times larger than the smallest one.
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method (BEM) considering realistic geometry head model was
applied [24, 25].

B. Proposed Source Model

Contrary to the conventional source model, the proposed
approach uses current density instead of the dipole intensity as a
variable. First, the cortical surface is divided into N small cor-
tical patches. Then, each cortical patch is assumed to have a
constant current density J,. In this case, the lead field A , is defi-
ned as electromagnetic quantity of jth sensor induced by ith
cortical patch with unit current density. Suppose that the ith
cortical patch includes £ vertices. Each vertex has its own unit
normal vector #,,= (#,,,, #a, #,) andvirtualarea »,,, where

m=1, -, k. The virtual area was assigned to each vertex as a
third of the area of all triangles meeting at a vertex [26]. This
assumption is valid because the total virtual area remains equal
to the actual area of the full tessellation. Then, we can evaluate
the lead field ¢,,, defined as relationship between mth vertex
and jth sensor by placing a unit dipole vector #,, at the position
of the mth vertex. Eventually, the lead field at jth sensor by a
unit current density in sth cortical patch is evaluated by integ-
rating «,, over the cortical patch as follows:
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Fig. 2 illustrates the conceptual comparison between the con-
ventional and proposed source models. We can see from the
figure that the new model can represent size, shape, and orien-



tation of each cortical patch without any loss of anatomical
information.

Some previous studies have used similar concept of the
constant cortical patch [6, 20], but they didn’t aim for compen-
sating anatomical information lost due to down-sampling of
cortical vertices.

C. Forward Calculation and Inverse Estimation

In the present study, realistic geometry head model was
considered to calculate electric potential induced by a point
dipolar source [24, 25]. A three-layer boundary element model
which consists of scalp, outer skull and inner skull was
adopted [25, 27], which will be described again in the next
section.

We used a linear estimation approach [4, 8] to reconstruct
cortically distributed brain sources. The expression for the in-
verse operator W is

W= RAT(ARAT+ A2C) ! 3

where A is the lead field matrix, R isa source covariance mat-
rix, and C is anoise covariance matrix. The source distribution
can be estimated by multiplying the measured signal at a specific
instant x by W. If we assume that both R and C are scalar
multiples of identity matrix, this approach becomes identical to
minimum norm estimation [28]. In this study, the source cova-
riance matrix R was assumed to be a diagonal matrix, which
means that we ignored relationships between neighboring sour-
ces. The lead field weightings [29]} were imposed to each dia-
gonal entry of R. In this study, pre-stimulus time window was
used to calculate C. A? is a regularization parameter and was
determined systematically using the following equation [22]:
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where frace(.) and SNR represent sum of diagonal terms and
signal to noise ratio, respectively. Although the equation (4)
was derived from Bayesian inference theory [4, 28], the choice
of the regularization parameter in (4) can be explained intuiti-
vely. The traces of matrices ARAT and C were introduced to
adjust the orders of the model term ARAT and regularization
term C in (3). The regularization parameter weakens the noise
covariance term when SNR is high; while it strengthens the
noise covariance term when SNR is low.

D. Computer Simulation

Neuroelectromagnetic inverse problems are hard to be verified
by in-vivo experiments because exact source locations inside
of the real human brain cannot be estimated a priori. For that
reason, artificially constructed forward data are widely used to
validate MEG and EEG inverse algorithms {6, 30]. Hence, we
applied the proposed approach to artificially constructed EEG
data.

We adopted realistic conditions to construct artificial EEG
data. We assumed 128 electrodes that were attached on a sub-
ject’s scalp according to extended 10-10 electrode system. To
utilize anatomical information, interface between white and gray
matter was extracted from MRI T1 images of an MNI standard
brain (http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mni
space.shtml#evans_proc) and tessellated into 865,712 trian-
gular elements and 432,654 vertices. To extract and tessellate
the cortical surface, we applied BrainSuite developed in the
University of Southern California, CA, USA [31]. For the accu-
rate forward calculation, full head structures were taken into
account and BEM was applied [28]. In the present study, the
three-layer model, consisting inner and outer skull boundary
and scalp surface, was used. 5,372 boundary elements and 2,748
surface nodes were generated from the same MRI data. The rela-
tive conductivity values of brain, skull, and scalp were assumed
tobe 1, 1/16, and 1, respectively [32]. Fig. 3 shows the boundary
element model used in the present simulation.
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Fig. 3. Boundary element model for EEG forward calculations. 5,372 elements and 2,748 nodes were generated. Note that the cortical surface meshes were not
included in the EEG forward calculation. They were used only for positioning dipolar sources.
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Nowadays, for the forward simulations, generating artificial
activation patches on a brain cortical surface has been populari-
zed instead of activating some point sources [33]. To generate
activation patches and construct forward data set, the concept
of virtual area was adopted. The activation patch was generated
using the following process: 1) A point is selected as a seed of
an activation patch area. 2) The patch area is extended by
including neighboring vertices around the patch. 3) If the total
virtual area of the cortical patch exceeds an aimed surface
area, the extension of the activation patch is terminated.

In the present study, we generated one activation patch for
each simulation. The patch was made of a set of dipoles with
constant current density and orientations perpendicular to the
cortical surface. Then, the current dipole moment at each vertex
was calculated by the product of the current density and the
virtual area. The temporal variation of current density J was
assumed as follows:

J=—0.6x10"%(+—100)*+0.6 (0 ms< £<200ms)
=0 (200 ms= £ < A00ms)

After calculating electric potential at the 128-channel elect-
rodes assuming 200 Hz-sampling rate, we added real brain
noise, which was obtained from a pre-stimulus period of a
practical EEG experiment. The original signal without noise
was scaled in order for signal-to-noise ratio to be approxima-
tely 10 dB and 7 dB. Fig. 4 shows an example of the artificial
EEG signals with respect to time.
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Fig. 4. Anexample of simulated EEG signals with real brain noise (SNR = 7 dB).

Although we used constant current patches to generate
artificial EEG signals, they were not corresponding to the
cortical patches used for the inverse estimation because they
were generated independently using full tessellation of the
cortical surface. In other words, the ideal patches of constant
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activity do not recover exactly the patches considered in the
source modeling.

E. Simulations and Results

We applied three different source models to the artificial
EEG data. The three cases are as follows:

(Case 1) One dipolar source was placed on each patch, which
is the conventional source model. The dipole intensity was
used as a variable and the dipole orientation was determined
by summing up normal vectors of neighboring vertices inside
the patch.

(Case 2) One dipole source was placed on each patch as in
the conventional source model, but area information of each
patch was considered. Current density was used as a variable
and area of each patch was multiplied by the conventional lead
field. The dipole orientation was determined by summing up
normal vectors of neighboring vertices inside the patch. This
case was simulated to investigate the influence of different
patch sizes on the solution accuracy.

(Case 3) Lead field matrix was evaluated by integrating all
cortical vertices inside each patch, which is the present source
model.

The three cases were tested for 50 activation patches of which
the positions and sizes were randomly chosen. Two different
SNRs, 10 dB and 7 dB, were simulated for each patch location.
The same inverse method given in Eq. (3) was applied to the
three cases. Fig. 5 and Fig. 6 show examples of results for two
different patch locations when SNR was 7 dB. Each figure shows
exact source location and source distributions reconstructed at
100 ms. Magnitude of the variables was normalized with respect
to maximum value and sources that exceeded 0.1 were visua-
lized. From the results, we can see the followings:

— When comparing the results of (Case 1) and (Case 2), we
can see that the irregular distribution of patch sizes has just
small influence on the solution accuracy. We can also see
intuitively that emergence of small oscillatory sources was
reduced slightly by using current density as a variable,
which coincides well with a previous study [23].

— When the proposed source model was applied, the resultant
distributions were more focalized compared to those of
(Case 1) and (Case 2). Moreover, the shapes of the patches
were more clearly reconstructed. Since the maximum mag-
nitude was increased, many noisy sources had smaller norma-
lized values than the cutoff magnitude (0.1) and removed
from the visualization.

For more quantitative comparison, an assessment criterion
named DF (degree of focalization) was introduced to measure



CHIm

(c) (d)

Fig. 5. Results of a realistic EEG simulation —a patch was assumed around right inferior temporal lobe: () Exact patch location; (b) Source distribution of (Case 1);
(c) Source distribution of (Case 2); (d) Source distribution of (Case 3). All quantities were normalized with respect to their own maximum value. Sources that
exceed 0.1 are visualized. SNR =7 dB. DF values of (b), (c), and (d) are 0.081, 0.083, and 0.184, respectively.

(a) (o)

© (@
Fig. 6. Results of a realistic EEG simulation —a patch was assumed around left frontal lobe: (a) Exact patch location; (b) Source distribution of (Case 1); (¢} Source
distribution of (Case 2); (d) Source distribution of (Case 3). Alf quantities were normalized with respect to their own maximum value. Sources that exceed
0.1 are visualized. SNR = 7 dB. DF values of (b), (c), and (d) are 0.065, 0.069, and 0.153, respectively.

accuracy of the reconstructed source [33]. The DF is defined as 2) In this study, the integration was performed only for limited sources of

. L. ; . o .
energy reconstructe dina patch area divided by overall ener gyz). W}.ll(':h the magnitude .exceeded 3.0 % of maximum value because general
minimurn norm solution results in small DF values
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If the energy in the assumed patch is exactly the same as that
of whole source space, DF becomes 1. On the contrary, if the
source is perfectly mislocalized, DF will be close to 0. Thus,
higher DF implies that the method can reconstruct more
accurate and focalized source distribution. This assessment
criterion is similar to the ROC curve analysis which investi-
gates relationship between true positive fraction and false
positive fraction [18]. Fig. 7 shows the comparison of the DF
values averaged for 50 activation patch simulations with diffe-
rent patch sizes and locations. The DF values decreased as the
SNR increased, but the overall tendencies remained unchanged.
We applied t-test to verify statistical difference of DF values
between new and conventional source models. The t-test applied
from (Case 1) and (Case 2) against (Case 3) stated statistical
differences (p < 0.0005), while the (Case 1) and (Case 2) does
not differ in their mean DF values (p > 0.1). It can be seen from
the results that the proposed source model could result in more
focalized and accurate source distribution very consistently.
These results demonstrate that the orientation errors affect
solution accuracy much more than irregular patch size does.
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g. 7. Comparison of DF values averaged for 50 cortical patch simulations.
Values in parentheses are standard deviations.

lI. DISCUSSION

any researchers have been trying to make the spatial
M resolution of EEG and MEG comparable to that of {MRI
or PET, which is believed to have higher spatial resolution
than EEG or MEG. As for hardware aspect, more and more
researchers are moving to a higher number of channels, and
EEG acquisition systems with 128 channels are not uncommon
any more. Even 256 channel EEG systems are commercially
available now [34]. In case of MEG, over 250 channel systems
have been already popularized (e.g. CTF 275 MEG system)
and being widely used. Combination of different modalities is
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now becoming a new alternative to enhance the limited spatial
resolution of the electromagnetic-based imaging techniques
[8]. As for software aspect, a lot of source imaging algorithms
have been developed to get more accurate and focalized source
estimate. Many methods are now adopting brain anatomy as a
basic constraint because high resolution structural MRI tech-
nology and image processing techniques enable us to get more
accurate information on the human brain anatomy |15, 17].

The present study deals with a problem arising when imposing
the anatomical constraint. Conventional studies have generated
coarse cortical surface mesh or sampled some vertices from
fine cortical surface mesh, to place the dipolar sources, but either
model could not take full advantage of the accurate anatomical
information which currently has sub-millimeter accuracy. The
conventional model placed one dipolar source in each cortical
patch and estimated the dipole intensity; whereas the proposed
model utilizes every cortical vertex inside a cortical patch in
evaluating a lead field matrix and estimates the current density
of the patch. Since the proposed model can be regarded as a
kind of numerical integrations over each source patch, it can
consider more accurate shapes and orientations of the cortical
patches.

It seems obvious from (2) that the proposed model needs
more computation to evaluate the lead field matrix than the
conventional decimated source model. Nevertheless, the overall
increment of computational time is not significant because the
size of the lead field matrix constructed using the proposed
model is the same as that of the conventional one. Please note
that the most time-consuming processes are matrix multiplica-
tions and inversion in (3) and calculation of inverse stiffness
matrix of boundary elements, which are common processes in
both approaches. In the present simulations shown in Fig. 5,
evaluation of (Case 1) took 54.3 s and that of (Case 3) took
55.5 s under a Pentium 4 ~ 3.4 GHz, Fortran 90 environment,
where we can see that the difference is nearly negligible.

In the present study, the proposed model has been applied to
realistic EEG simulations and the results have been compared
to those of conventional ones. Boundary element method consi-
dering realistic geometry head model was used for the forward
calculations. For the verification, we generated 50 cortical
patches with different sizes and locations, and simulated time-
varying EEG signals. To be more realistic, real brain noise
extracted from a pre-stimulus period of a practical experiment
was added to the artificial EEG signals. For the quantitative
comparisons, we adopted a criterion named DF, which can
measure how well the reconstructed sources recover the original
patches. We could see from the simulations that the considera-
tion of area information did not improve the results as much as
we expected. However, the application of the proposed model



resulted in more accurate source estimate.

The proposed model is more plausible than the conventional
ones because it considers whole cortical surface area without
any loss of anatomical information. The present study only
applied a linear inverse operator to the inverse estimation, but
the proposed model is applicable to other inverse techniques
that use same anatomical constraint because this model does
not deal with forward or inverse calculation methods but just
construction of lead field matrix containing more accurate
anatomical information. Although the simulations were per-
formed only for EEG, the model can be applied to MEG source
estimation in the same manner.

In summary, we have used a source patch model that can
consider accurate anatomical information in EEG/MEG cortical
source imaging process. The proposed model has been applied
to realistic EEG simulations and compared quantitatively with
conventional ones. The present simulation results show that
the proposed model provides enhanced performance in recon-
structing cortical activations, as compared with conventional
cortical source models. It is expected that the present model
will serve as a useful means to get high resolution cortical
source images in various EEG/MEG applications.
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