• Title/Summary/Keyword: Mesh Analysis

Search Result 1,723, Processing Time 0.026 seconds

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Comparing Complications of Biologic and Synthetic Mesh in Breast Reconstruction: A Systematic Review and Network Meta-Analysis

  • Young-Soo Choi;Hi-Jin You;Tae-Yul Lee;Deok-Woo Kim
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.3-9
    • /
    • 2023
  • Background In breast reconstruction, synthetic meshes are frequently used to replace acellular dermal matrix (ADM), since ADM is expensive and often leads to complications. However, there is limited evidence that compares the types of substitutes. This study aimed to compare complications between materials via a network meta-analysis. Methods We systematically reviewed studies reporting any type of complication from 2010 to 2021. The primary outcomes were the proportion of infection, seroma, major complications, or contracture. We classified the intervention into four categories: ADM, absorbable mesh, nonabsorbable mesh, and nothing used. We then performed a network meta-analysis between these categories and estimated the odds ratio with random-effect models. Results Of 603 searched studies through the PubMed, MEDLINE, and Embase databases, following their review by two independent reviewers, 61 studies were included for full-text reading, of which 17 studies were finally included. There was a low risk of bias in the included studies, but only an indirect comparison between absorbable and non-absorbable mesh was possible. Infection was more frequent in ADM but not in the two synthetic mesh groups, namely the absorbable or nonabsorbable types, compared with the nonmesh group. The proportion of seroma in the synthetic mesh group was lower (odds ratio was 0.2 for the absorbable and 0.1 for the nonabsorbable mesh group) than in the ADM group. Proportions of major complications and contractures did not significantly differ between groups. Conclusion Compared with ADM, synthetic meshes have low infection and seroma rates. However, more studies concerning aesthetic outcomes and direct comparisons are needed.

Efficiency enhancement of sheet metal forming analysis with a mesh regularization method (격자 정방형화 방법을 이용한 박판 성형해석의 효율개선)

  • Yoon, J.H.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.339-342
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

  • PDF

Techniques of Automatic Finite Element Mesh Generation on Surface Primitives (원시곡면 위의 유한요소망 자동생성 기법)

  • 이재영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.189-202
    • /
    • 1996
  • Complex geometric shapes can be defined simply and efficiently by combining and operating various surface primitives. These primitives and their intersection curves are used in finite element mesh generation to form an easy and intuitive procedure for finite element modelling of curved surfaces. This paper proposes techniques of automatic mesh generation on surface primitives with arbitrarily shaped boundaries and control curves, which may be created by surface to surface intersection. A method of automatic mesh generation on plane, which was previously developed by the author, has been modified for application to the surface mesh generation. Owing to the mesh generation-wise differences between planes and surfaces, the surfaces should be transformed into conceptual plane so that the modified plane mesh generation method can be applied. Surface development, mapping and mesh reconstruction are the key techniques suggested in this paper. The selection of the technique to apply can be determined automatically on the basis of the developability, existence of singularity and other characteristics of the surfaces on which the mesh is to be generated. The suggested techniques were implemented into parts of mesh generation functions of the finite element software, MacTran. Their validity and practicality were manifested by the actual use of this software.

  • PDF

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

A Study of Mesh Automatic Generating Method for Cracked Body (균열을 포함한 계의 mesh 자동분할에 관한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • In this paper new mesh generation method is proposed for crack propagation analysis based on the finite element method. The main tool of the method is the Delaunay Triangulation, Transfinete element mapping, and it allows the setting of the arbitrary crack-growth increment and the arbitrary crack direction. It has the form of a subroutine, and it is easily introduced as a subroutine for any mesh generation method which is based on the blocking method.

  • PDF

Numerical Evaluations of the Effect of Feature Maps on Content-Adaptive Finite Element Mesh Generation

  • Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.8-16
    • /
    • 2007
  • Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general, the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature map generation schemes should be useful in the FEA of bioelectromagnetic problems.

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.