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Abstract

Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various
problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been
limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation
scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the
electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general,
the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created
based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation
coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show
that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices
of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature
map generation schemes should be useful in the FEA of bioelectromagnetic problems.
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I. INTRODUCTION tissues, (ii) representation of arbitrary head geometry with
complicated boundaries, and (iii) realistically volumetric
analysis with numerical and computing power. For instance,
Marin et al reported the influence of skull anisotropy on the
forward and inverse solutions in EEG using realistic head
models [4]. The influence of anisotropic conductivity tensors
on the scalp electrical potentials and EEG distributed source
imaging with 2-D FE head models also were investigated in

I n solving bioelectromagnetic problems, the finite element
analysis (FEA) is the most widely used method which
offers a numerical and computational technique to obtain
approximate solutions of the partial differential equations
(PDEs). The use of FEA is significantly increasing in various
fields such as biomechanics, bioelectromagnetics, and

biomolecular imaging, since FEA offers a powerful analytical [5] and [6].
means in dealing with bioelectromagnetic phenomenon
effectively. Moreover, the applications of FEA have become
more popular in the biomedical fields such as biomechanical
analysis [1] and biomedical imaging [2, 3]. The FE method
allows (i) incorporation of anisotropic electrical properties of

To apply the FEA to bioelectromagnetic problems, the first
and major requirement is the mesh generation of an
electrically conducting volume. Numerical attempts to
develop effective and efficient mesh generation methods for
complex volumes were presented such as in [7] and [8]. In
addition, several commercial packages offer a tool of
generating uniform meshes to represent a complex volume
such as COMSOL [9] and Nastran [10]. However, one major
limitation in applying the FE method over conventional
methods such as boundary element method and finite
difference method is overly created number of nodes and
elements, which result in the overwhelming computational
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load.

One of the ways to decrease the computational load is to
reduce node and element numbers, while maintaining its
numerical accuracy of FEA, which could be an outstanding
benefit to FEA applications. Mesh refinement technique is one
of the common methods for such purpose by representing the
region of interest with much smaller elements [11, 12, 13].

Recently, we have developed a novel mesh generation
scheme that produces FE meshes that are content-adaptive to
given MR images or volumes of different geometries from
individuals [14]. One advantage of these content-adaptive FE
meshes (cMeshes) is the representation of the complex
domain using optimal number of nodes and elements. We
have demonstrated that the same computing domain could be
represented with far less node and element numbers. Also we
have shown the numerical evaluations of these cMeshes with a
significant gain in computation time via EEG forward
solutions to test their effectiveness with 3-D cMesh models.
The detailed methodology of generating cMeshes is given in
[14]. In this work, we have tested the effects of various feature
maps derived from given MR image on the cMesh generation.
To test the effects of feature maps, we have generated various
feature maps by incorporating two advanced methods offering
additional choices. First, we generated tensor-driven feature
extractors derived from the eigenvalues of the Hessian and
Structure tensor. Second, we utilized the principal curvature
schemes including the Mean and Gaussian curvature to
develop more effective feature maps. Also we have evaluated
the effectiveness on our cMesh FE head models generated by
each and specific feature map.

In this paper, we have studied how various feature maps
affect the accuracy and efficiency of cMesh generation
techniques. For such purpose, we generate several specific
feature maps, and then evaluate the content-adaptiveness of
cMeshes and the quality of cMesh triangle elements. The
paper first introduces the conventional mesh generation
schemes in Section A. In the following section, we introduce
the procedures of how to generate cMeshes from MR image.
In Section C, the methods of how to extract feature maps are
demonstrated. This section continues to describe conventional
and advanced feature map generation techniques based on the
improved differential geometry measures. In Section D,
numerical evaluations are demonstrated to investigate the
content-adaptiveness of cMeshes and the quality of cMesh
triangle elements from the conventional and proposed
approaches. In the following, the results of feature map
extraction, cMesh generation, comparisons, and numerical
evaluations are given. Finally the paper is concluded with
remarks on future works.
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Il. METHODS
A. Conventional Mesh Generation Schemes

Most mesh generation schemes used for bioelectromagnetic
problems can be categorized into two parts. The first is
uniform mesh generation in which FEs of approximately same
size are generated to represent a complex volume. Examples
can be found in the works of [5], [6], and [15]. The second
technique by Ziolkowski and Brauer [13] used a local mesh
refinement technique, but required user's guidelines to select
local areas and used FEs. Although the procedure for these
mesh generations is easy and straightforward, one of the
critical shortcomings of these mesh generation schemes is the
overly produced FEs, thus demanding the overwhelming
computational load.

B. Content-adaptive Mesh Generation

Our content-adaptive mesh generation scheme [14] consists
of the following steps: namely (i) generation of a feature map
reflecting the spatial distributions of the structural informaiton
of given image, (ii) node sampling from the feature map using
a digital halftoning technique, and (iii) mesh generation via
Delaunay tessellation. The cMesh generation relies on the
performance of two key techniques: the quality of feature
maps and the accuracy of content-adaptive node sampling. In
this work, we focus on the former and its effects on cMeshes to
generate more efficient and accurate cMesh FE models.

C. Image Feature Map Generation

To generate new and improved feature maps from given
MRI, we have used tensor-driven methods using Hessian [8,
16], Structure tensor [17], and principal curvature methods
such as Mean and Gaussian curvature [18, 19].

Conventional Feature Map Generation

In the work of Yang et al [8], two types of feature map
generation techniques were proposed from a Hessian tensor of
each pixel, H:

(G N 16Dy
TGN TGy,

)

where I is an image, i and j are image indices, x and y
indicate partial derivates in space. One feature map was
derived from the maximum of Hessian tensor components:

Sinax (s J) = max{| Lo (G DL Ly G ) b1 5 G ) ) 2

Another suggested feature map was derived from the eige-
nvalues, 11's, of the tensor:
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meax(i’j)zmaX{llu] (l,j)|,|ﬂ2(l,j)|} (3)

The two eigenvalues of the Hessian matrix, denoted by 1,
and 11, are given by

“ =%[(1xx+1W)+,/(IH—1W)2+41§} )
U =%[(1xx +1yy)—,/(1x,c -1, +4Ify] )

The Hessian tensor approach was utilized to extract image
feature information from given MRI, since one critical attr-
ibute of its ability is highly sensitive toward feature orien-
tations with the second-order directional derivatives. However,
it is known to be highly sensitive toward noise as well.

Advanced Feature Map Generation

The conventional feature maps proposed by Yang et al [8]
showed the adequate procedures for the purpose of image
representation that cMeshes are adaptive to the contents of an
image. Currently, improved differential geometry provides
better choices in deriving feature maps with more effective
and accurate properties. In this study, we have derived
advanced feature maps based on the Hessian and Structure
tensor as alternative ways [14].

For the Hessian approach, we have derived the feature maps
with the eigenvalues of the tensor in the following way

Saue G ) = G )+ 131G, ) (6)
Fu G ) =y, ) @)

where 1t's are the positive eigenvalues of the tensor matrix.
Another proposed approach is the utilization of the Stru-
cture tensor due to robustness in detecting fundamental features
of objects. The Structure tensor S can be expressed as follows:

.- [ 2o y} )
- 2
11, I
We have derived new feature maps again with the eigen-

values of the Structure tensor as the same ways of the Hessian
tensor:

Fou Gy ) = G, )+ 15 G, ) (10
Fs o)) =15 G, ) (11)
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The above feature map reflects the edges and comers of
image structures for the plus sign. By taking the maximum
eigenvalue, new feature map can be derived which is a natural
extension of the scalar gradient viewed as the value of max-
imum variations. The other feature map represents the local

_ coherence or anisotropy for the minus sign [20].

Also we have generated new feature maps via the principal
curvature. There are geometric meanings with respect to the
eigenvalues and eigenvectors of the tensor matrix. The first
eigenvector (corresponding eigenvalue represents the largest
absolute values) is the direction of greatest curvature. Con-
versely, the second eigenvector is the direction of least
curvature. Also its eigenvalue has the smallest absolute value.
The consistent eigenvalues are the respective amounts of these
curvatures. The eigenvalues of tensor matrix with real values
indicate principal curvatures, and are invariant under rotation.

The Mean curvature [18, 19] can be obtained from the .
Hessian tensor matrix. It is equal to the half of the trace of H
which is invariant to the selection of x and y as well. The new
feature map via the Mean curvature can be expressed as
follows:

L Q+12) =201 I, + 1, (1+12)

20+12+12)"?

S )= (13)

From the Hessian tensor again, we can also derive new

feature map by using the Gaussian curvature as shown below:
I, -1t

fol, )= (14)

(l+I§ +If,)2

D. Numerical Evaluations of cMeshes

Evaluations of Content-adaptiveness of cMeshes

In order to compare the effects of the feature maps on
cMeshes, we have used the following five indices as the
goodness measures of content-adaptiveness: (i) correlation
coefficient (CC) of the feature map to the original MRI, (ii)
root mean squared error (RMSE), (iii) residual error (RE)
between the original MRI and the reconstructed MRI based on
the nodal MR intensity values, (iv) number of nodes, and (v)
number of elements. For the fair comparison of the cMesh
qualities, almost same mumber of nodes and elements were
generated by adjusting the mesh parameter. The total number
of content-adaptive nodes is controlled by adjusting the
parameter, as shown below.



£ 0= faHY" (15)

where fis a feature map and £ is a control parameter for the
number of content-adaptive nodes.

In order to check the content information of the nonun-
iformly spaced nodes, the MR images were reconstructed only
using the MR intensity values at the sampled nodes via cubic
interpolation. Then the RMSE and RE values were computed
between the original and the reconstructed MRI.

Evaluations of cMesh Quality

The mesh quality highly affects computational analysis in
terms of numerical accuracy of the solution on FEA. The
evaluation of mesh quality is highly critical, since it provides
some indications and insights of how appropriate a particular
discretization is for the numerical accuracy on FEA.

For a triangle element, the mesh quality measure can be
expressed as

A

g=a—5———
P41} +i

(16)

where A represents the area of the triangle, and 11, 1, and 13
are the side lengths of the triangle elements, and a=443 is a
normalizing coefficient justifying the quality of an equilateral
triangle to 1 (i.e., g=1, when I, = I, = 5. If g>0.6, the triangle

(o)

(b}
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possesses acceptable mesh quality [21]). The overall mesh
quality was evaluated for triangular elements in terms of the
arithmetic mean by
1 N
gzﬁg% (17)
where N indicates the number of elements. The mean value
as the overall mesh quality indicator is highly sensitive to the
occurrence of elements with an extremely "poor” mesh quality
of triangle elements. Also it represents the worst mesh quality
and the distribution of mesh quality. Certainly, other measures
are available such as examination of dihedral angles of the
triangle elements and other geometric measures [22, 23].

lll. RESULTS

A. MRI Preprocessing

A single MR slice was selected from a set of multi-slice
anatomical MR images covering the whole head which was
obtained from 3.0T MRI scanner (Magnum 3.0, Medinus Inc.,
Korea) via a standard anatomical MR imaging sequence with
the following scan parameters: 128 transaxial slices, TR=
35ms, TE=7ms, and slice thickness=2mm. Morphological
processing including opening and closing of the head binary
masks was performed. This single MR slice was subsequently

(c)

(d)

(e)

i)}

Fig. 1. Content-adaptive meshes of a MR image using the conventional method. (a) MR image, (b} feature map using frex, (C) using fiimax, (d) content-adaptive nodes
from (c), (e) Content-adaptive meshes from (b) with 2327 nodes and 4562 elements, and (f) cMeshes from (c) with 2326 nodes and 4560 elements
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used in further processing of feature map extraction and cMesh
generation.

B. cMesh Generation

Conventional cMesh Generation

Fig. 1 shows a set of results of 2-D conventional cMesh
generation obtained by applying the techniques introduced by
Yang et al to MR images. Fig. 1 (a) is a MR image, (b)
conventional feature map obtained using fma, (¢) another
suggested feature map using fuma. Fig. 1 (d) shows
content-adaptive nodes from Fig. 1 (c). Fig. 1 (e¢) and (f) show
content-adaptive meshes in 2-D from Fig. 1 (b) and (¢)
respectively. There are 2327 nodes / 4562 triangular elements
in Fig. 1 (e) and 2326 nodes / 4560 elements in Fig. 1 (f). The
triangle with different sizes indicates adaptive characteristics
of mesh generation in accordance with the two different
feature maps. These meshes are compared to the cMeshes
produced using the advanced feature map extractors in the
subsequent sections.

Advanced cMesh generation

We have generated the cMeshes of the given MRI using the
new and advanced feature maps. Figs. 2 (a), (b), and (c)
display the feature maps obtained using fi, fii, and fir. derived
from Hessian approach. Their corresponding cMeshes are

(a)

)

(o)

(e)

shown in Fig. 2 (d), (e), and (f) respectively. In comparison to
the results in Fig. 1, there are 2326 nodes / 4560 elements in
Fig. 2 (d), 2324 nodes / 4556 elements in Fig. 2 (e), and 2329
nodes / 4566 elements in Fig. 2 (f). The high sensitivity of the
Hessian tensor to the given MR is clearly demonstrated inside
image contents. These cMeshes are also evaluated in the
following sections.

Fig. 3 shows a set of demonstrative results from the Structure
tensor approach Figs. 3 (a), (b), and (c) show the proposed feature
maps acquired using fs:, fs, and fs. respectively. The corre-
sponding cMeshs are described in Fig. 3 (d), (e), and (f). There
are 2323 nodes / 4554 elements, 2325 nodes / 4558 elements,
and 2323 nodes / 4554 e¢lements respectively. Based on these
results, it indicates that the Structure tensor-driven feature extr-
actor yields optimal information on image features and their
resultant cMeshes look most adaptive to the contents of given
MRI. That is larger elements are present in the homogeneous
regions and smaller elements in the high frequency regions
with reasonable numbers of nodes and elements. Content-
adaptive nature is clearly visible in the contents of the given MRI.

Also by using the Mean and Gaussian curvature, the feature
maps obtained by fi and f; were generated as shown in Fig. 4
(a) and (b) respectively. The results of cMesh generation were
described in Fig. 4 (c) and (d) as well. The characteristics of
curvatures to the image features are clearly noticeable.

(c)

()

Fig. 2. Hessian tensor-driven feature extractor. (a) feature map using fi, (b) using fi, (c) using £+, (d) cMeshes from (a) with 2326 nodes and 4560 elements, (e)
from (b) with 2324 nodes and 4556 elements, (f) from (c) with 2329 nodes and 4566 elements
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(a) (b) (c)

(o) (e) (f)

Fig. 3. Structure tensor-driven feature extractor. (a) feature map using £, (b) using s, (c) using f5., {d) cMeshes from (a) with 2323 nodes and 4554 elements, (e)
from (b} with 2325 nodes and 4558 elements, (f) from (c) with 2323 nodes and 4554 elements

Table 1. Numerical Evaluations of cMeshes

odes MR vs. Feature Map - MRI vs. Recon. MR cMesh Quality No. of Poor Elements : ‘
_ (Elements) cc RVISE RE Meon ~  sid. a<0.6
Srox 2327 (4562) 0.4474 40.1138 0.2104 0.7889 0.1591 503 25
Sfamax 2326 (4560) 0.4945 46.9754 0.2464 0.7750 0.1622 617 2.565
Su+ 2326 (4560) 0.6751 34.9433 0.1833 0.7994 0.1543 418 1.45
S 2324 (4556) 0.4951 46.3831 0.2433 0.7757 0.1645 649 1.28
S~ 2329 (4566) 0.619N 34.9433 0.1833 0.8194 0.1402 224 0.868
Sor 2323 (4554) 0.6040 31.9609 0.1677 0.8115 0.1445 284 1.59
fs 2325 (4558) 0.6072 31.9340 0.1675 0.8167 0.1418 243 1.565
S5~ 2323 (4554) 0.6053 32.9625 0.1729 0.8209 0.1438 254 1.62
fm 2326 (4560) 0.6751 34.9433 0.1833 0.7994 0.1543 418 29
fe 2325 (4558) 0.6982 28.9611 0.1414 0.8342 0.1348 166 4.71

(@) (b) {c) {d)

Fig. 4. Curvature-based feature extractor. (a) feature map using fis, (b) using 7, () cMeshes from (a) with 2326 nodes and 4560 elements, (d) from (b) with 2325
nodes and 4558 elements
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(a) (b)

{f) (o)

(c)

(h)

{d) (e)

) )

Fig. 5. Reconstructed MRI using the sampled nodal intensity values. (a) using the nodes from frax, (b) fimax, (C) fi, (d) i (€) i, () forr (@) 5 (M) A5 () s ) f&

respectively

C. Numerical Evaluations of cMeshes

As described in the previous section, we have generated the
reconstructed MRIs using its nodal intensity values for
comparison of the content-adaptiveness of the cMeshes. Fig. 5
shows a set of reconstructed MRIs using conventional nodes
from fua and fima, proposed nodes derived from the
eigenvalues of the Hessian and Structure tensor, and nodes
from the Mean and Gaussian curvature, fiy and fg, resp-
ectively. As summarized in Table 1, since the characteristics
of the Gaussian curvature are highly sensitive to the image
contents including unnecessary noise and artifacts, the
Gaussian curvature-based feature extractor produces the
lowest RMSE and RE values. Also, the Structure tensor-

50

driven feature extractor seems to generate the most content-
adaptive meshes with reasonable numbers and content-
adaptive morphology with respect to number of nodes (or
elements) and mesh morphology as shown in Fig. 3.

The CC values in Table 1 show strong correlation between
the Structure tensor-driven feature map and MRI, indicating
the Structure-driven feature extractor generates much better
demonstrative features. Although CC value of Structure tensor-
driven approach is lower than feature map by fi, fir, fu, and
fa, it produced the much lower RMSE and RE values, indicating
the reconstructed MRI is much closer to the original MRL

In the case of evaluations of cMesh quality, the result by /G
describes the highest vatue. Also the Structure tensor approach

a5
40
35
30
25

20|
15
10 T

ISINY

20 pup Ajjonb Ussio

0.25

02¢

0.15

|

0.1

0.05

fu- for fs T fu o

foox fimoe far T
Feature map extactor

(a)

[ P T TR THE
Feoture map exiractor

foo froex Tue B0 fuo fov & B b fo

Feature map extractor

(c)

f- fw fo

(b)

Fig. 6. Representative plots of numerical evaluation measure. (a) cMesh quality and CC between the feature map and the original MR, (b) and (c) RMSE and RE

between the reconstructed MRI and the original MRI respectively
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show greatly acceptable values with the much lower number
of poor elements compared to other feature map extractors,
indicating the Structure tensor-driven approach can offer num-
erically accurate and efficient computational accuracy for FEA.

Fig. 6 shows the information in Table 1 in plots. The overall
results of cMesh quality and CC are plotted in Fig. 6 (a)
simultaneously. The comparison between MRI and the
reconstructed MRI is also shown in Fig. 6 (b) and (c) in terms
of RMSE and RE respectively.

IV. DISCUSSION

The advanced methodology to generate accurate and
specific feature maps presented in this work offers more
choices for improved cMesh generation. We believe that the
cMesh generation schemes with more accurate and specific
feature maps, thereby resulting in computation efficiency and
accuracy on FEA, should be useful in studying bioelectr-
omagnetic problems. As demonstrated on the presented meth-
odology, we have tested various feature maps to generate
cMeshes from a single MR slice, and then we have evaluated
the effects on content-adaptiveness and the quality of cMesh
triangle elements from each cMesh FE head model produced
by specific feature map generation techniques, which could be
used in forward and inverse computation of bioelectro-
magnetic source imaging of the brain [35, 6]. The numerical
evaluations of cMesh FE head models were presented in terms
of CC, RMSE, RE, and cMesh quality. The results demo-
nstrate the Hessian tensor-driven feature extractor shows the
less adaptive characteristic to contents of given MRI due to the
high sensitivity to the contents including redundant content
information and noises. However, the Structure tensor-driven
feature extractor offers a significant effect on cMesh gener-
ation, since it shows much more adaptive behavior to the
contents and quite acceptable mesh quality for FEA. Although
we examined cMeshes applied by various feature maps, the
methods for generating cMeshes related to more effective and
efficient feature map extractors should be applicable to other
fields of research as well.

One of'the issues is to generate a patient-specific conducting
model for the application of FEA in bioelectromagnetic
problems or to produce deformable standardized meshes to
represent complex domains [24]. With the advancements in
measuring tissue properties [3, 6] which could be incorporated
into the meshes, we believe in the subject-specific modeling
approaches.

In the following work, we plan to investigate the numerical
accuracy and compare the performance against the conve-
ntional meshes. Currently, we are investigating the accuracy

W.H. Lee, T.-S. Kim, M. H. Cho, S. Y. Lee

of forward solutions of E/MEG source imaging and the effect
of anisotropic conductivities within the content-adaptive FE
models generated by the specific and improved feature maps
against the conventional FE models. The presented techniques
on advanced feature map extractors should also be applicable
to other fields of bioelectromagnetic research areas.

V. CONCLUSION

We have tested various feature maps for content-adaptive
FE mesh generation and have evaluated the performance of
the MRI content-adaptive FE head models generated through
improved feature map extraction techniques. The Structure
tensor-driven feature extractor seems to generate optimal
information on image features and meshes are most adaptive
to the contents of given MRI. The study described should be
useful to the bioelectromagnetic imaging modalities such
E/MEG source imaging [5, 6] and MREIT [3].
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