• 제목/요약/키워드: Medical Image Segmentation

검색결과 259건 처리시간 0.024초

가변 블록을 이용한 의료영상 무손실 압축 (A Lossless Medical Image Compression Using Variable Block)

  • 이종실;권오상;구자일;한영환;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권4호
    • /
    • pp.361-367
    • /
    • 1998
  • 본 논문에서는 영상에서 국부적 중복성과 전역적 중복성을 생기게 하는 두 가지 특성인 완만함과 유사성에 대해서 연구하였다. 완만함은 주어지 s한화소 주위의 화소 값들을 갑자기 변화되지 않고 서로 상관관계를 가지면서 점차적으로 변화한다는 것이다. 유사성은 한 영상내의 어떤 패턴들이 영상의 나머지 부분에서 반복된다는 것이다. 이런 관점에서 두 가지 중복성을 이용하여 무손실 의료 영상압축 방법을 제안한다. 제안한 방법은 간단한 알고리즘을 이용하여 영상을 가변 블록으로 분할한 후, 각 블록의 특성에 따라 부호화를 행한다. 제안한 의료 영상 압축 방법은 기존의 무손실 압축방법인 허프만 부호화, 산술 부호화, 램펠 - 지브 부호화, HINT, 하나의 예측기를 이용한 무손실 방법인 JPEG보다 10~40[%] 정도의 압축률이 개선되었다.

  • PDF

복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘 (Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image)

  • 박성미;이유진;박종원
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.430-437
    • /
    • 2010
  • 간이식 수술을 함에 있어서 간 내부의 혈관의 형태를 알고 시작하는 것이 수술의 성공률을 매우 높일 수 있다. 본 논문은 조영제를 투여한 정상 환자의 복부 MDCT를 이용하여 얻어진 영상을 다른 여러 장기부분은 제거하고 간 영상만을 추출한 후 간 내의 혈관들의 기본형태를 파악하여 몇몇 구조단위들을 만들고 Morphological filtering을 이용하여 주요 혈관인 좌, 우, 중간정맥을 찾아낸다. 중간정맥을 기준으로 간 실질을 절단하여 절단된 부분의 크기를 예측하고 수술전에 전체 상황을 파악하기 위한 연구이다. 간의 추출 방법은 명암값의 범위와 분포 샘플링 과정에 의한 명암값 분포비율을 가지고 배경과 근육층을 제거하였다. 간의 대략적인 위치 정보와 몸통의 위치정보를 이용하여 단위 매쉬영상과 일치되는 영상을 찾은 후 결과 영상을 조합하고 8방향 연결성을 이용하여 확장하고 화소간의 채우기 과정을 거쳐 최종적인 간영상을 추출하였다. 추출된 간 영상에서 간 영역의 특징적인 명암값과 다양한 구조단위를 가지고 Morpological Filtering을 수행 한 후 나타난 결과들을 조합하여 만들어진 영상에서 각 슬라이스 별로 크기순으로 큰 부분들을 남겨두어 굵은 혈관만을 추출하였다. 추출된 영상들을 3D로 구성 시 자연스럽게 보여지도록 인터폴레이션을 수행한 후 3D Reconstruction 을 수행하여 3D 형태의 간 혈관을 보고 중간 정맥을 파악하여 간 실질의 절단 위치를 예측하게 된다. 절단되어진 간 실질의 크기를 확인하고 계산에 의하여 수술 성공 가능성을 파악할 수 있다.

뇌 구조 분석을 위한 연속적인 퍼지 분할법과 구획화 방법의 개선 (Successive Fuzzy Classification and Improved Parcellation Method for Brain Anlaysis)

  • 윤의철;황진우;김재석;김재진;김인영;권준수;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.377-384
    • /
    • 2001
  • 일반적으로 정신질환인 경우 뇌의 미세한 이상이 있는 것으로 알려져 있어 자기공명영상의 시각적 분석에서 뇌의 구조적 이상을 밝히는 데 한계가 있다. 따라서 특정 부위의 용적이나 모양의 이상을 통하여 정신질환의 뇌 구조적 이상을 연구하는 것이 일반적이다 이러한 경우 뇌 자기공명영상은 조직간의 경계가 불분명하여 뇌 구조 분석의 신뢰도는 조직별 분할의 정확성이 좌우한다 본 논문에서는 뇌 자기공명영상의 특성에 적합한 퍼지 분할법을 반복적으로 적용함으로써 분할 영상의 질을 개선하여 뇌 구조 분석의 신뢰도를 높이고, 사용자 편의성을 고려한 소프트웨어를 이용한 좌우 뇌섬엽 용적 측정을 통해 뇌 구조적 이상에 대한 보다 나은 분석 방법을 제시한다.

  • PDF

장골의 관심영역 생성을 위한 천장관절 MRI 세그멘테이션 (Sacroiliac Joint MRI Segmentation to Generate RoI of Ilium)

  • 이고은;민재은;최창환;조정찬;최상태;최상일
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.223-224
    • /
    • 2022
  • 본 논문에서는 축형 척추관절염으로 발전할 수 있는 천장관절염 환자들을 진단하기 위해 장골의 관심영역을 자동 생성할 수 있는 세그멘테이션 방법을 제안한다. 다양한 MRI 기기로부터 얻은 천장관절염 환자의 영상에서 장골의 GT(Ground Truth)를 생성하였으며, 대장 용종 검출을 위한 세그멘테이션 모델인 PraNet과 지역 특징 간의 표현 능력을 활용할 수 있는 Position Attention Module을 사용하여 유의미한 성능 향상을 보여주었다.

  • PDF

자기공명심장영상의 좌심실 분할과 가시화 (Segmentation and Visualization of Left Ventricle in MR Cardiac Images)

  • 정성택;신일홍;권민정;박현욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권2호
    • /
    • pp.101-107
    • /
    • 2002
  • 이 논문에서는 자기공명심장영상에서 내벽과 외벽의 추출을 위한 반자동 분할 알고리즘을 제안하였다. 이 알고리즘은 Generalized gradient vector flow snake와 초기 윤곽선 예측 과정을 기반으로 한다. 특히 이 알고리즘은 내벽과 외벽의 공간적인 특설을 이용하며 Cross profile correlation matching (CPCM)을 사용한다. 현재 공간에서의 이전 시간에 관계된 영상과 현재 시간에서의 공간에 관계된 영상을 사용하여 초기 윤곽선 예측을 더욱 효과적으로 수행하였다. Multislice와 multiphase의 Siemens와 GE. Medinus 자기공명심장영상을 사용하여 실험하였고 많은 영상들에 대해 충분히 만족할만한 결과를 얻었다. 그리고 분할한 결과로 quantitative analysis를 수행하였고 시각적으로 보여주었다. 개발된 소프트웨어는 Visual C++을 사용하여 windows 환경의 응용프로그램으로 개발되었다.

Segmentation of Arterial Vascular Anatomy around the Stomach based on the Region Growing Based Method

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.75-79
    • /
    • 2014
  • Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.

영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법 (3D Medical Image Segmentation Using Region-Growing Based Tracking)

  • 고선영;이재연;임정은;나종범
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.239-246
    • /
    • 2000
  • 본 논문에서는, 입력으로 주어진 사람이 직접 분할한 1장의 슬라이스의 결과로부터 인접한 슬라이스들에 대해서 자동으로 원하는 장기를 추적하여 분할하는 반자동 분할 알고리즘을 제안한다. 일반적으로. 영역 확장에 기반한 추적 방법은 객체 투영. 초기 영역(seed) 추출, 그리고 영역확장에 의한 윤곽선 결정의 세 단계로 이루어진다. 이 때 의료 영상의 특성 상 장기들 사이의 경계가 모호한 경우 잘못 선택된 초기 영역은 최종 윤곽선이 장기 안쪽으로 파고 들거나 주변 영역으로 퍼져 나가는 결과를 만들 수 있다. 제안한 알고리즘에서는 영상의 특성을 이용하여 분할하려는 장기와 비슷한 밝기 값을 가지는 주변 장기와 붙어 있는 부분에서 주의 깊게 초기 영역을 선택해 줌으로써. 적절한 경계를 얻을 수 있으며, 경사도가 낮은 영역에서 깨끗한 윤곽선을 얻지 못하는 영역 확장 방법의 문제점의 해결을 위하여 Fourier descriptor를 사용한 후처리(post-Processing) 방법을 제안하였다. 또한, 양 방향 추적을 통해서 새로운 영역이 나타났을 때에도 놓치지 않고 찾아낼 수 있다. 본 논문에서 제안한 알고리즘을 1mm 간격의 82장의 X선 CT 영상에서 좌우측 신장 분할에 적용한 결과 만족할 만한 결과를 얻었다.

  • PDF

시간 영역에서 획득된 초음파 영상의 심내강 영역에 대한 3차원 표현 (3-D Representation of Cavity Region from Ultrasonic Image Acquired in the Time Domain)

  • 원철호;채승표;구성모;김명남;조진호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.119-122
    • /
    • 1997
  • In this paper, we represented the variation of heart cavity area in the space domain by 3-d rendering. We arranged the 2-d sequence of ultrasonic image acquired in the time domain as volumetric data, and extracted heart cavity region from 3-d data. For the segmentation of 3-d volume data, we extracted the cavity region using the method of expanding the cavity region that is same statistical property. By shading which is using light and object normal vector, we visualized the volume data on image plane.

  • PDF

현미경 영상 기반 암세포 생존력 관련 표현형 추출 (Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction)

  • 강미선
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

2D 의료영상의 3차원 입체영상 생성 (3D Stereoscopic Image Generation of a 2D Medical Image)

  • 김만배;장성은;이우근;최창열
    • 방송공학회논문지
    • /
    • 제15권6호
    • /
    • pp.723-730
    • /
    • 2010
  • 최근 다양한 3차원 영상처리 기술이 산업체 전반으로 확대되고 있다. 관련 기술중의 하나인 입체변환은 기존의 2D영상에서 입체영상을 생성하는 기술이다. 이 기술은 영화, 방송 콘텐츠에 적용되어 3D 입체로 시청할 수 있는데, 3D 기술의 지속적인 산업체 응용이 요구됨에 따라 입체변환 기술을 새로운 분야로 적용하여 새로운 입체 콘텐츠를 제작하는 것이 필요하다. 이러한 추세에 따라 이 기술을 의료영상에 응용하는 것이 본 논문의 목적이다. 의료 영상은 정확한 판독이 필요하기 때문에 2D 의료영상보다 구체적인 3D 정보를 얻을 수 있는 3D 입체영상에 관심이 높아지고 있다. 본 논문에서는 기존의 2D 의료영상으로부터 입체영상을 생성하는 의료영상 입체변환 방법을 제안한다. 실험 영상으로 CT(Computed Tomograpy) 영상을 사용한다. 제안 방법은 장기의 영역 분할, 에지를 이용한 경계선 추출, 각 장기의 깊이 정보에 따른 명암 분석 등으로 구성된다. 얻어진 데이터를 바탕으로 CT 영상의 깊이맵을 생성한다. 최종적으로 추출된 깊이 맵과 2D 의료영상으로 부터 입체영상을 생성한다.