본 논문에서는 영상에서 국부적 중복성과 전역적 중복성을 생기게 하는 두 가지 특성인 완만함과 유사성에 대해서 연구하였다. 완만함은 주어지 s한화소 주위의 화소 값들을 갑자기 변화되지 않고 서로 상관관계를 가지면서 점차적으로 변화한다는 것이다. 유사성은 한 영상내의 어떤 패턴들이 영상의 나머지 부분에서 반복된다는 것이다. 이런 관점에서 두 가지 중복성을 이용하여 무손실 의료 영상압축 방법을 제안한다. 제안한 방법은 간단한 알고리즘을 이용하여 영상을 가변 블록으로 분할한 후, 각 블록의 특성에 따라 부호화를 행한다. 제안한 의료 영상 압축 방법은 기존의 무손실 압축방법인 허프만 부호화, 산술 부호화, 램펠 - 지브 부호화, HINT, 하나의 예측기를 이용한 무손실 방법인 JPEG보다 10~40[%] 정도의 압축률이 개선되었다.
간이식 수술을 함에 있어서 간 내부의 혈관의 형태를 알고 시작하는 것이 수술의 성공률을 매우 높일 수 있다. 본 논문은 조영제를 투여한 정상 환자의 복부 MDCT를 이용하여 얻어진 영상을 다른 여러 장기부분은 제거하고 간 영상만을 추출한 후 간 내의 혈관들의 기본형태를 파악하여 몇몇 구조단위들을 만들고 Morphological filtering을 이용하여 주요 혈관인 좌, 우, 중간정맥을 찾아낸다. 중간정맥을 기준으로 간 실질을 절단하여 절단된 부분의 크기를 예측하고 수술전에 전체 상황을 파악하기 위한 연구이다. 간의 추출 방법은 명암값의 범위와 분포 샘플링 과정에 의한 명암값 분포비율을 가지고 배경과 근육층을 제거하였다. 간의 대략적인 위치 정보와 몸통의 위치정보를 이용하여 단위 매쉬영상과 일치되는 영상을 찾은 후 결과 영상을 조합하고 8방향 연결성을 이용하여 확장하고 화소간의 채우기 과정을 거쳐 최종적인 간영상을 추출하였다. 추출된 간 영상에서 간 영역의 특징적인 명암값과 다양한 구조단위를 가지고 Morpological Filtering을 수행 한 후 나타난 결과들을 조합하여 만들어진 영상에서 각 슬라이스 별로 크기순으로 큰 부분들을 남겨두어 굵은 혈관만을 추출하였다. 추출된 영상들을 3D로 구성 시 자연스럽게 보여지도록 인터폴레이션을 수행한 후 3D Reconstruction 을 수행하여 3D 형태의 간 혈관을 보고 중간 정맥을 파악하여 간 실질의 절단 위치를 예측하게 된다. 절단되어진 간 실질의 크기를 확인하고 계산에 의하여 수술 성공 가능성을 파악할 수 있다.
일반적으로 정신질환인 경우 뇌의 미세한 이상이 있는 것으로 알려져 있어 자기공명영상의 시각적 분석에서 뇌의 구조적 이상을 밝히는 데 한계가 있다. 따라서 특정 부위의 용적이나 모양의 이상을 통하여 정신질환의 뇌 구조적 이상을 연구하는 것이 일반적이다 이러한 경우 뇌 자기공명영상은 조직간의 경계가 불분명하여 뇌 구조 분석의 신뢰도는 조직별 분할의 정확성이 좌우한다 본 논문에서는 뇌 자기공명영상의 특성에 적합한 퍼지 분할법을 반복적으로 적용함으로써 분할 영상의 질을 개선하여 뇌 구조 분석의 신뢰도를 높이고, 사용자 편의성을 고려한 소프트웨어를 이용한 좌우 뇌섬엽 용적 측정을 통해 뇌 구조적 이상에 대한 보다 나은 분석 방법을 제시한다.
본 논문에서는 축형 척추관절염으로 발전할 수 있는 천장관절염 환자들을 진단하기 위해 장골의 관심영역을 자동 생성할 수 있는 세그멘테이션 방법을 제안한다. 다양한 MRI 기기로부터 얻은 천장관절염 환자의 영상에서 장골의 GT(Ground Truth)를 생성하였으며, 대장 용종 검출을 위한 세그멘테이션 모델인 PraNet과 지역 특징 간의 표현 능력을 활용할 수 있는 Position Attention Module을 사용하여 유의미한 성능 향상을 보여주었다.
이 논문에서는 자기공명심장영상에서 내벽과 외벽의 추출을 위한 반자동 분할 알고리즘을 제안하였다. 이 알고리즘은 Generalized gradient vector flow snake와 초기 윤곽선 예측 과정을 기반으로 한다. 특히 이 알고리즘은 내벽과 외벽의 공간적인 특설을 이용하며 Cross profile correlation matching (CPCM)을 사용한다. 현재 공간에서의 이전 시간에 관계된 영상과 현재 시간에서의 공간에 관계된 영상을 사용하여 초기 윤곽선 예측을 더욱 효과적으로 수행하였다. Multislice와 multiphase의 Siemens와 GE. Medinus 자기공명심장영상을 사용하여 실험하였고 많은 영상들에 대해 충분히 만족할만한 결과를 얻었다. 그리고 분할한 결과로 quantitative analysis를 수행하였고 시각적으로 보여주었다. 개발된 소프트웨어는 Visual C++을 사용하여 windows 환경의 응용프로그램으로 개발되었다.
Journal of International Society for Simulation Surgery
/
제1권2호
/
pp.75-79
/
2014
Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.
본 논문에서는, 입력으로 주어진 사람이 직접 분할한 1장의 슬라이스의 결과로부터 인접한 슬라이스들에 대해서 자동으로 원하는 장기를 추적하여 분할하는 반자동 분할 알고리즘을 제안한다. 일반적으로. 영역 확장에 기반한 추적 방법은 객체 투영. 초기 영역(seed) 추출, 그리고 영역확장에 의한 윤곽선 결정의 세 단계로 이루어진다. 이 때 의료 영상의 특성 상 장기들 사이의 경계가 모호한 경우 잘못 선택된 초기 영역은 최종 윤곽선이 장기 안쪽으로 파고 들거나 주변 영역으로 퍼져 나가는 결과를 만들 수 있다. 제안한 알고리즘에서는 영상의 특성을 이용하여 분할하려는 장기와 비슷한 밝기 값을 가지는 주변 장기와 붙어 있는 부분에서 주의 깊게 초기 영역을 선택해 줌으로써. 적절한 경계를 얻을 수 있으며, 경사도가 낮은 영역에서 깨끗한 윤곽선을 얻지 못하는 영역 확장 방법의 문제점의 해결을 위하여 Fourier descriptor를 사용한 후처리(post-Processing) 방법을 제안하였다. 또한, 양 방향 추적을 통해서 새로운 영역이 나타났을 때에도 놓치지 않고 찾아낼 수 있다. 본 논문에서 제안한 알고리즘을 1mm 간격의 82장의 X선 CT 영상에서 좌우측 신장 분할에 적용한 결과 만족할 만한 결과를 얻었다.
In this paper, we represented the variation of heart cavity area in the space domain by 3-d rendering. We arranged the 2-d sequence of ultrasonic image acquired in the time domain as volumetric data, and extracted heart cavity region from 3-d data. For the segmentation of 3-d volume data, we extracted the cavity region using the method of expanding the cavity region that is same statistical property. By shading which is using light and object normal vector, we visualized the volume data on image plane.
During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.
최근 다양한 3차원 영상처리 기술이 산업체 전반으로 확대되고 있다. 관련 기술중의 하나인 입체변환은 기존의 2D영상에서 입체영상을 생성하는 기술이다. 이 기술은 영화, 방송 콘텐츠에 적용되어 3D 입체로 시청할 수 있는데, 3D 기술의 지속적인 산업체 응용이 요구됨에 따라 입체변환 기술을 새로운 분야로 적용하여 새로운 입체 콘텐츠를 제작하는 것이 필요하다. 이러한 추세에 따라 이 기술을 의료영상에 응용하는 것이 본 논문의 목적이다. 의료 영상은 정확한 판독이 필요하기 때문에 2D 의료영상보다 구체적인 3D 정보를 얻을 수 있는 3D 입체영상에 관심이 높아지고 있다. 본 논문에서는 기존의 2D 의료영상으로부터 입체영상을 생성하는 의료영상 입체변환 방법을 제안한다. 실험 영상으로 CT(Computed Tomograpy) 영상을 사용한다. 제안 방법은 장기의 영역 분할, 에지를 이용한 경계선 추출, 각 장기의 깊이 정보에 따른 명암 분석 등으로 구성된다. 얻어진 데이터를 바탕으로 CT 영상의 깊이맵을 생성한다. 최종적으로 추출된 깊이 맵과 2D 의료영상으로 부터 입체영상을 생성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.