References
- Sonka M, Vaclav H, Roger B. Image processing, analysis, and machine vision. Cengage Learning, 2014.
- Felzenszwalb PF, Daniel PH. "Efficient graph-based image segmentation." International Journal of Computer Vision 2004;59(2):167-181 https://doi.org/10.1023/B:VISI.0000022288.19776.77
- Zaidi Habib, Issam El Naqa. "PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques." European journal of nuclear medicine and molecular imaging 2010;37(11):2165-2187 https://doi.org/10.1007/s00259-010-1423-3
- Gao Y, Jean FM, Norman K, Jose A. "Optimal region growing segmentation and its effect on classification accuracy." International Journal of Remote Sensing 2011;32(13):3747-3763 https://doi.org/10.1080/01431161003777189
- Tang J."A color image segmentation algorithm based on region growing." Computer Engineering and Technology (ICCET), 2010 2nd International Conference on. Vol. 6. IEEE, 2010.
- Mendoza CS, Begoria A, Carmen S, Tomoas G. "Fast parameter-free region growing segmentation with application to surgical planning." Machine Vision and Applications 2012;23(1):165-177 https://doi.org/10.1007/s00138-010-0274-z
- Kumar M., Kamal KM. "A Texture based tumor detection and automatic segmentation using seeded region growing method." International Journal of Computer Technology and Applications 2011;2(4).
- Qin AK, David AC. "Multivariate image segmentation using semantic region growing with adaptive edge penalty." Image Processing, IEEE Transactions on 2010;19(8):2157-2170 https://doi.org/10.1109/TIP.2010.2045708
- Kass M, Andrew W, Demetri T. "Snakes: Active contour models." International Journal of Computer Vision 1988;1(4):321-331 https://doi.org/10.1007/BF00133570
- Malladi R, James AS, Baba CV. "Shape modeling with front propagation: A level set approach." Pattern Analysis and Machine Intelligence, IEEE Transactions On 1995;17(2):158-175 https://doi.org/10.1109/34.368173
- Fedkiw S, Osher R. "Level set methods and dynamic implicit surfaces", 2003
- Cremers D, Mikael R, Rachid D. "A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape." International Journal of Computer Vision 2007;72(2):195-215 https://doi.org/10.1007/s11263-006-8711-1
- Huang R, Kwan-Liu M. "Rgvis: Region growing based techniques for volume visualization." Computer Graphics and Applications, 2003. Proceedings. 11th Pacific Conference on. IEEE, 2003
- Dougherty Geoff. Digital image processing for medical applications. Cambridge University Press, 2009
- Kumano S, Tsuda T, Tanaka H, Hirata M, Kim T, Murakami T, et al. "Preoperative evaluation of perigastric vascular anatomy by 3-dimensional computed tomographic angiography using 16-channel multidetector- row computed tomography for laparoscopic gastrectomy in patients with early gastric cancer." Journal of Computer Assisted Tomography 2007;31(1):93-97 https://doi.org/10.1097/01.rct.0000233123.75560.08
- Laparoscopy MB, Matsuki M, Kani H, Tatsugami F, Yoshikawa S, Narabayashi I, et al. "Preoperative assessment of vascular anatomy around the stomach by 3D imaging using MDCT before laparoscopy-assisted gastrectomy." American Journal of Roentgenology 2004;183(1):145-151 https://doi.org/10.2214/ajr.183.1.1830145
- Lee SW, Shinohara H, Matsuki M, Okuda J, Nomura E, Mabuchi H, et al. "Preoperative simulation of vascular anatomy by three-dimensional computed tomography imaging in laparoscopic gastric cancer surgery." Journal of the American College of Surgeons 2003;197(6):927-936 https://doi.org/10.1016/j.jamcollsurg.2003.07.021
- Miyaki A, Imamura K, Kobayashi R, Takami M, Matsumoto J, Takada Y. "Preoperative assessment of perigastric vascular anatomy by multidetector computed tomography angiogram for laparoscopyassisted gastrectomy." Langenbeck's Archives of Surgery 2012;397(6):945-950 https://doi.org/10.1007/s00423-012-0956-2
- Rajon DA, Bolch WE. "Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models." Computerized Medical Imaging and Graphics 2003;27(5):411-435 https://doi.org/10.1016/S0895-6111(03)00032-6