• Title/Summary/Keyword: Mechanical load test

Search Result 1,543, Processing Time 0.025 seconds

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Structural Analysis Model to Evaluate the Mechanical Reliability of Large-area Photovoltaic Modules (대면적 태양광 모듈의 기계적 신뢰성 평가를 위한 모델)

  • Noh, Yo Han;Jeong, Jeong Ho;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.56-61
    • /
    • 2022
  • Recently, the expansion of the domestic solar market due to the promotion of eco-friendly and alternative energy-related policies is promising, and it is expected to lead the high-efficiency/high-power module market based on M10 or larger cells to reduce LCOE, 540-560W, M12 based on M10 cells Compared to the existing technology with an output of 650-700W based on cells, it is necessary to secure competitiveness through the development of modules with 600W based on M10 cells and 750W based on M12 cells. For the development of high efficiency/high-power n-type bifacial, it is necessary to secure a lightweight technology and structure due to the increase in weight of the glass to glass module according to the large area of the module. Since the mechanical strength characteristics according to the large area and high weight of the module are very important, design values such as a frame of a new structure that can withstand the mechanical load of the Mechanical Load Test and the location of the mounting hole are required. In this study, a structural analysis design model was introduced to secure mechanical reliability according to the enlargement of the module area, and the design model was verified through the mechanical load test of the actual product. It can be used as a design model to secure the mechanical reliability required for PV modules by variables such as module area, frame shape, and the location and quantity of mounting holes of the structural analysis model verified. A relationship of output drop can be obtained.

An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA (역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가)

  • Baek, Seung-Se;Kwon, Il-Hyun;Kim, Hoi-Hyun;Lee, Dong-Hwan;Yang, Sung-Mo;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

A Study on Load Simulator for Traction system combined testing (전동차 조합시험을 위한 부하 시뮬레이터에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Pak, Sung-Hyuk;Kim, Jong-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1643-1645
    • /
    • 2005
  • A newly-built inverter has to undergo a series of stress tests in the final stage of production line. This can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. The latter is controlled to create some specific load characteristic needed for the test. In this paper a test method is proposed, in which no mechanical equipment is needed. The suggested test stand consists only of a inverter to be tested and a simulator converter. Both devices are connected back- to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load. In odor to wove rightness of the suggested test method, the simulation and actural experiment rallied out emulation for a 2.2kW induction motor.

  • PDF

CHANCE OF MECHANICAL PROPERTIES IN NITINOL BY FATIGUE LOAD (피로하중에 의한 NITINOL의 기계적 성질의 변화)

  • Ha, Kook-Bong;Shon, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.725-734
    • /
    • 1993
  • Nitinol wires are now widely used in the orthodontic field because of their unique shape memory effect and superelasticity. But sometimes Nitinol wires are deformed in clinical use. Fatigue load is possible cause of Nitinol deformation. To determine the effect of fatigue load to the mechanical properties of Nitinol, various fatigue cycle$(1\times10^4,\;2\times10^4,\;3\times10^4,\;4\times10^4,\;5\times10^4,\;1\times10^5)$ were applied to $0.017\times0.025$ inch Nitinol. The results obtained were as follows ; 1. Applied load increased as fatigue cycle increased in three point bending test. 2. Maximum tensile strength and elongation decreased as fatigue cycle increased. 3. Tn SEM, brittle fracture pattern was increased when fatigue cycle increased.

  • PDF

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application (미소 기전 시스템용 니켈 박막의 기계적 물성 측정)

  • Baek, Dong-Cheon;Park, Tae-Sang;Lee, Soon-Bok;Lee, Nag-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

Injury Assessment and Analysis under Blast Load Using MADYMO (MADYMO를 이용한 폭발 하중에 따른 인체 상해평가 및 분석)

  • Choi, Ho-Min;Kim, Jae-Ki;Pack, In-Seok;Lee, In-Young;Kwon, Dae-Ryeong;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • There is a need for explosion experiments for explosion-related research. However, there are many restrictions in performing an actual experiment. Therefore, in this paper, an alternative method of overcoming the constraints of an explosion experiment has been conducted using a passenger behavior analysis program called MADYMO to assess and analyze the human body injury due to explosion load. To increase the reliability of the analysis, a drop test has been conducted with the analysis. We provide a new framework for performing the analysis. In future, we will further develop our research with the goal of reducing the opportunity cost for the study of the human body injury.

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.