• Title/Summary/Keyword: Mechanical interaction

Search Result 1,841, Processing Time 0.034 seconds

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

Investigation on Severe Aerodynamic Load Condition about Pantograph (판토그래프 가혹공력하중에 대한 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho;Chung, Kyung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.361-366
    • /
    • 2001
  • The present study describes a practical estimation procedure about the pantograph under several severe aerodynamic load conditions. As the operating speed of the Korean Train Express(KTX) reaches 350km/h, structural safety at various conditions should be examined at the design stage. In the present study, a compact and reliable procedure is developed to get aerodynamic loads on each part of the pantograph regarding the typhoon condition, the train/tunnel interaction, the train/train interaction and the side wind condition. In the estimation procedure, 3-dimensional steady and unsteady CFD simulation around the high speed train facilitates assigning the external local flow condition around the pantograph. The procedure is verified using the results of the low speed wind tunnel test at JARI and applied to 7 flow conditions and 4 operation configurations.

  • PDF

A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation (분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

Reflected Wave and Transmitted Shock in the Shock-Vortex Interaction (충격파-와동 간섭에서 발생하는 반사파 및 관통 충격파)

  • Chang Se-Myong;Chang Keun-Shik;Lee Soogab
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.139-142
    • /
    • 2002
  • An experimental model and a conceptual model are investigated in this paper with both shock tube experiment and numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

  • PDF

Development of interface elements for the analysis of fluid-solid problems (유체-고체 상호작용 해석을 위한 계면요소의 개발)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (II) (For Variable Loads and Distances between Defects) (불규칙하게 분포된 미소결함사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (II) (결함간의 거리 및 하중변화를 중심으로))

  • Song, Sam-Hong;Bae, Jun-Su;Choe, Byeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.201-212
    • /
    • 2001
  • If defects are located far apart, fatigue cracks are independently initiated from them and gradually approach other cracks so that the fatigue life becomes influenced by the crack growth behavior of those interacting cracks. In this study, the effect of the stress interaction between defects on the fatigue crack propagation behavior is investigated experimentally and these results are verified by finite element method. In addition, fatigue crack propagation behaviors under micro hole interaction field are studied.

  • PDF

The Gauge Invariant Formulation for the Interaction of the Quantized Radiation Field with Matter

  • 이덕환
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.720-726
    • /
    • 1999
  • It has been proved by the semi-classical gauge invariant formulation (GIF) that the correct interaction operator for coupling the field-free material states with the radiation field must be the position form regardless of the gauge chosen for expressing the electromagnetic potentials, in accordance with the well-established principle of gauge invariance. The semi-classical GIF is now extended to the quantized radiation field interacting with matter by defining the energy operator for the quantized radiation field in the presence of matter. It will be shown in this paper that the use of the energy operator guarantees the position form of the interaction operator even in the Coulomb gauge, contrary to the conventional approach in which the dark material Hamiltonian is used to get the interaction operator of the momentum form. The multipolar Hamiltonian is examined in the context of the quantum mechanical gauge transformation.

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.

Wall-Droplet Interaction Modeling and Comparative Study on Deformation Models for the Improvement of Icing Analysis Under SLD Conditions (SLD 조건에서 착빙 해석 정확도 개선을 위한 Wall-Droplet Interaction 수치 모델링 및 Deformation 모델 비교 연구)

  • Bae, Jinkyu;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.255-267
    • /
    • 2020
  • Under SLD conditions, due to the large size of droplets, physical phenomena such as wall-droplet interaction and deformation have a significant effect on the icing process. Accordingly, many studies have been conducted in order to computationally simulate SLD effects. As one of the efforts, post-processing method have been proposed to describe wall-droplet interaction effect, which modified collection efficiency using Wright model. However, since the model doesn't properly consider the wall condition, it still overestimated collection efficiency and impingement limit. To solve this problem, impingement areas were divided into 3 different regions, and the post-processing method was introduced with the new wall-droplet interaction model developed based on Bai and Gosman rebound model. In order to consider the effect of deformation, the most suitable model was selected by comparing the deformation models used in the various icing codes. As a result, the modified post-processing method showed improved accuracy in predicting the impingement limits and collection efficiency by further estimating mass flux loss due to rebound, and it was observed that the result was the closest to the experimental data when the deformation effect was included by using Wiegand model.