DOI QR코드

DOI QR Code

Wall-Droplet Interaction Modeling and Comparative Study on Deformation Models for the Improvement of Icing Analysis Under SLD Conditions

SLD 조건에서 착빙 해석 정확도 개선을 위한 Wall-Droplet Interaction 수치 모델링 및 Deformation 모델 비교 연구

  • Bae, Jinkyu (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.01.29
  • Accepted : 2020.03.22
  • Published : 2020.04.01

Abstract

Under SLD conditions, due to the large size of droplets, physical phenomena such as wall-droplet interaction and deformation have a significant effect on the icing process. Accordingly, many studies have been conducted in order to computationally simulate SLD effects. As one of the efforts, post-processing method have been proposed to describe wall-droplet interaction effect, which modified collection efficiency using Wright model. However, since the model doesn't properly consider the wall condition, it still overestimated collection efficiency and impingement limit. To solve this problem, impingement areas were divided into 3 different regions, and the post-processing method was introduced with the new wall-droplet interaction model developed based on Bai and Gosman rebound model. In order to consider the effect of deformation, the most suitable model was selected by comparing the deformation models used in the various icing codes. As a result, the modified post-processing method showed improved accuracy in predicting the impingement limits and collection efficiency by further estimating mass flux loss due to rebound, and it was observed that the result was the closest to the experimental data when the deformation effect was included by using Wiegand model.

SLD 조건은 직경이 50㎛ 이상인 과냉각대형액적의 분포가 지배적인 결빙 환경을 뜻한다. SLD 조건에서는 액적의 큰 크기로 인해 wall-droplet interaction, deformation 등의 물리적 현상이 착빙 과정에 중요한 영향을 미친다. 그에 따라 SLD 효과를 수치적으로 모사하기 위한 다양한 연구가 수행되었고, 부착률을 수정하는 후처리 기법을 통해 wall-droplet interaction 현상을 고려하는 방법이 제안되었다. 그러나 이 방법은 액적이 충돌하는 벽면 특성을 제대로 고려하지 않는 반경험식(Wright Model)을 사용하기 때문에 착빙 영역에서 여전히 부착률과 부착 한계를 과대 예측한다. 이 문제를 해결하기 위해 본 연구에서는 착빙 영역을 세 개의 영역으로 구분하였다. 그리고 벽면 특성을 고려하는 Bai and Gosman rebound 모델을 바탕으로 개발한, 새로운 wall-droplet interaction 모델을 후처리 기법에 도입했다. 그리고 액적의 항력계수를 증가시키는 deformation 현상을 반영하기 위해 3가지 deformation 모델을 비교·분석하여 가장 적합한 모델을 선정했다. 앞의 내용을 바탕으로 개발한 SLD 결빙 예측 코드를 검증하기 위해 실험 데이터를 활용하여 해석을 수행했다. 그 결과 수정된 후처리 기법은 착빙 영역에서 rebound 현상에 의한 부착률 감소를 더욱 크게 예측하였고 부착 한계와 부착률 크기를 예측하는 데 있어 향상된 정확성을 보여줬다. 그리고 deformation에 의한 항력계수의 증가를 가장 크게 결정하는 Wiegand model이 실험과 가장 유사한 것을 확인할 수 있었다.

Keywords

References

  1. "AC 91-74B - Pilot Guide : Flight In Icing Conditions," October 2015, p. 5.
  2. Pereira, C. M., "Status of NTSB aircraft icing certification-related safety recommendations issued as a result of the 1994 ATR-72 accident at Roselawn, IN," AIAA Meeting Paper, January 1997.
  3. Potapczuk, M. G., "ICE MASS MEASUREMENTS : IMPLICATIONS FOR THE ICE ACCRETION PROCESS," 41st Aerospace Science Meeting and Exhibit AIAA2003-387, January 2003.
  4. Wright, W. B., and Potapczuk, M. G., "Semi-Empirical Modeling of SLD Physics," AIAA 2004-412, January 2004.
  5. Honsek, R., "Development of a Threedimensional Eulerian model of droplet-wall interaction mechanisms," M.E. Thesis, Mechanical Engineering Dept., McGill University, Montreal, QC, June 2005.
  6. Bilodeau, D. R., Habashi, W. G., and Fossati, M., "Eulerian Modeling of Supercooled Large Droplet Splashing and Bouncing," Journal of Aircraft, Vol. 52, No. 5, September 2015.
  7. Wright, W. B., "Further Refinement of the LEWICE SLD Model," AIAA Aerospace Sciences Meeting and Exhibit, January 2006.
  8. Hospers, J. M., "Eulerian Method for Super-cooled Large droplet Ice-accretion on Aircraft Wings," University of Twente, 2013.
  9. Bai, C., and Gosmasn, A., "Development of Methodology for Spray Impingement Simulation," SAE Technical Report, 1995.
  10. Clift, R., Grace, J. R., and Weber, M. E., "Bubbles, Drops and Particles," Academic Press, New York, 1978.
  11. Schmehl, R., "Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation," ILASS-Europe, September 2002.
  12. Papadakis, M., Rachman, A., Wong, S., and Bidwell, C., "Water Impingement Experiments on a Naca23012 Airfoil with Simulated Glaze Ice Shapes," 42nd AIAA Aerospace Sciences Meeting & Exhibit, January 2005.
  13. Papadakis, M., Rachman, A., Wong, S., Bidwell, C., and Bencic, T., "An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes," Society of Automotive Engineers TP-2003-01-2129, January 2003.
  14. Papadakis, M., Rachman, A., Wong, S., and Bidwell, C., "Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes," NASA/TM 2007-213959, October 2007.
  15. Son, C. K., Oh, S. J., and Yee, K. J., "Development of 2nd Generation Ice Accretion Analysis Program for Handling Gemeral 3-D Geometries," Korean Society of Computational Fluids Engineering, June 2015.
  16. Spalart, P. R., and Aupoix, B., "Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness," International Journal of Heat and Fluid Flow, Vol. 24, No. 4, 2001, pp. 454-462. https://doi.org/10.1016/S0142-727X(03)00043-2
  17. Ruff, G. A., and Berkowitz, B. M., "Users manual for the NASA Lewis ice accretion prediction code(LEWICE)," NASA/CR-185129, May 1990.
  18. Trujillo, M. F, Matthews, W. S, Lee, C. F., and Peters, J. E., "Modeling and Experiment of Impingement and Atomization of a liquid spray on a wall," International Jet Engine Research, No. 1, 2000, p. 87.
  19. Beaugendre, H., Morency, F., and Habashi, W. G., "FENSAP-ICE's Three-Dimensional In-Flight Ice Accretion Module: ICE3D," Vol. 40, No. 2, 2003 pp. 239-247. https://doi.org/10.2514/2.3113
  20. Vargas, M., and Feo, A., "Deformation and breakup of water droplets near an airfoil leading edge," Journal of aircraft, Vol. 48, No. 5, 2011, pp. 1749-1765. https://doi.org/10.2514/1.C031363