• Title/Summary/Keyword: Mechanical fastener Hole

Search Result 17, Processing Time 0.021 seconds

Fatigue Crack Retardation by Concurrent Cold-Expansion and Ring-indentation (홀확장과 링압인 동시적용에 의한 피로균열지연)

  • Yu, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.305-316
    • /
    • 1997
  • A more efficient method for obtaining the fatigue life enhancement of a structure member with fastener holes is described. It is based on the combined process of cold-expansion and ring-indentation. Residual stresses were induced onto premachined holes using ring-indentation process near the fastener hole combined with cold-expansion. And residual stresses at the vicinity of a hole were evaluated using a fracture mechanics approach. The compressive residual stresses were larger using the combined process than is in the case of simple cold-expansion. Fatigue testing of aluminum specimens showed that the fatigue crack growth retardation emanating from a circular hole was greater for the combined process than for a simple cold-expansion alone.

Finite Element Analysis of Re-Cold Expansion in Order to Improve the Fatigue Life of Fastener Hole that has been Cold Expanded Before (홀확장법을 적용한 체결홀의 피로수명 개선을 위한 재 홀확장 효과에 대한 유한요소 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Cho, Myoung-Rea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1110-1115
    • /
    • 2006
  • Cold expansion of fastener holes has been successfully used for many years to impart beneficial compressive residual stresses. Beneficial compressive residual stress of fastener hole that has been cold expanded before is reduced by using of materials for a long time. As a result, fatigue life of material is reduced. So, compressive residual stresses of material have to regenerate by re-cold expansion method. In this paper, it was carried out a finite element analysis about variation of residual stress due to tensile stress and residual stress distribution that was regenerated by re-cold expansion method in the fastener hole. Here, a diversity tensile stress was used. Also, it was performed a finite element analysis according to cold expansion rate of re cold expansion in order to obtain a beneficial compressive residual stress.

Application of Weight Function Method to Elliptical Arc Through Cracks at Mechanical Fastener Holes (기계적 체결홀에 존재하는 타원호형 관통균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.304-310
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. In this study mode I, II and III stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by applying weight function method. The weight function method for two dimensional mixed-mode problem is extended to three dimensional one and it is verified.

  • PDF

Analysis for the Residual Stress by Cold Expansion Method and Interference Fit (흘확장법과 억지끼워맞춤에 의한 잔류응력 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1615-1622
    • /
    • 2002
  • The purpose of this study is comparing cold expansion method with interference fit. Cold expansion method and interference fit of fastener hole is using in the aerospace industry. These treatment lead to an improvement of fatigue life to the compressive residual stresses developed on the hole surface. But Research is nothing to about difference effect of between cold expansion method and interference fit. So, this paper, it is shown that Comparing cold expansion method with interference fit using the finite element method. It is further shown that residual stress distribution according to plate thickness and clamping force.

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Hyeon, Cheol-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method (II) - Mixed-Mode Stress Intensity Factor Analysis - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형: 관통균열의 음력확대계수 해석 (II) - 혼합모드 음력확대계수 해석 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Ryu, Myeong-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1671-1677
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks. The weight function method for elliptical arc through cracks at mechanical fastener holes has been developed and verified in the part I of this study. In part H, applying the weight function method, the effects of the amount of clearance on the mixed-mode stress intensity (actors are investigated and the change of crack shape is predicted from the analysis for various crack shapes. The stress intensity factors leer inclined crack are analyzed and critical angle at which mode I stress intensity factor becomes maximum is determined.

Using the Finite Element Method, 3 Dimensional FE Analysis of Residual Stress by Cold Expansion Method in the Plate Baying Adjacent Holes (인접홀에서 홀확장법 적용시, 유한요소법을 이용한 잔류응력해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.528-532
    • /
    • 2006
  • In the aerospace industry, Cold expansion has been used the most important method that is retarded of crack initiation from fastener hole surface. Cold expansion method(CEM) is that a oversized tapered mandrel goes through the hole in order to develop a compressive residual stress as the passing of the mandrel around the hole. Therefore, because of characteristic of mandrel inserting, Residual Stress Distributions (RSD) are differently generated form Entry, Mid and Exit position of the plate. Also, it is respected that RSD are changed as distances between holes. In this paper, It is performed a FE analysis of RSD by CEM and it is respectively shown RSD in the Entry, Mid and Exit position. It is compared residual stress results form the cold expansion in these two cases: the concurrent CEM and the sequential CEM. From this research, it has been found that compressive residual stress of Entry position is lower than other positions. Also, the concurrent CE of adjacent holes leads to much higher compressive residual stress than the sequential CE. In addition, in the sequential CE case, a compressive RSD of 1 step's hole around is lower than compressive RSD of 2 step's hole around.

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.603-608
    • /
    • 2001
  • Recently, cold expansion of fastener holes is commonly used in the aerospace industry to increase the fatigue endurance of airframes. Cold expansion process is used as the retardation of crack initiation in the hole. This treatment leads to an improvement of fatigue behavior due to the compressive residual stresses developed on the hole surface. The residual stress profile depends on the cold expansion ratio. In the present paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen. It is further shown that residual stress increases in proportion to cold expansion ratio. It is thought that crack growth rate increases as cold expansion ratio.

  • PDF

A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate (홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구)

  • Lee, Joon-Hyun;Lee, Dong-Suk;Lee, Hwan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

Finite Element Analysis of the Residual Stress by Cold Expansion Method under the Influence of Adjacent Holes (인접 홀의 영향을 받는 홀 확장 잔류응력의 유한요소해석)

  • Kim, Cheol;Yang, Won Ho;Seok, Chang Seong;Kim, Dae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.79-84
    • /
    • 2003
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. Despite its importance to aerospace industries, little attention has been devoted to the accurate modeling of the process. This study is devoted to the modeling and simulation of the residual stress resulting from the cold expansion of two adjacent fastener holes. Simultaneous cold expansion of two adjacent holes lead to much higher compressive residual stress than sequential cold expansion.