• Title/Summary/Keyword: Mechanical etching

Search Result 400, Processing Time 0.026 seconds

Variable Optical Attenuator using Parallel Plate Electrostatic Actuator (평행 평판 정전형 구동기를 이용한 가변 광 감쇠기)

  • 김태엽;허재성;문성욱;신현준;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.448-452
    • /
    • 2004
  • The micromachined variable optical attenuator(VOA) was presented in the paper. The VOA has two single mode fiber(SMF) aligned with free space and symmetric parallel plate actuator with microshutter, which can control a amount of light by driving the actuator. In the paper, analysis on driving performances of the VOA was performed and can be reduced threshold voltage through the decreasing displacement actuating range. This paper presents a VOA that is fabricated using bosch deep silicon etching process with silicon on insulator(SOD wafer. The VOA consists of driving electrode, ground electrode, actuating microshutter, and mechanical stopper. In this VOA, actuating shutter is driven by electrostatic force and the threshold voltage is close to 28V, 46V come along with the spring width of 5${\mu}{\textrm}{m}$, 7${\mu}{\textrm}{m}$ respectively. Attenuation range is measured from 2.4㏈ to 16.7㏈.

Speckle Defect by Dark Leakage Current in Nitride Stringer at the Edge of Shallow Trench Isolation for CMOS Image Sensors

  • Jeong, Woo-Yang;Yi, Keun-Man
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.189-192
    • /
    • 2009
  • The leakage current in a CMOS image sensor (CIS) can have various origins. Leakage current investigations have focused on such things as cobalt-salicide, source and drain scheme, and shallow trench isolation (STI) profile. However, there have been few papers examining the effects on leakage current of nitride stringers that are formed by gate sidewall etching. So this study reports the results of a series of experiments on the effects of a nitride stringer on real display images. Different step heights were fabricated during a STI chemical mechanical polishing process to form different nitride stringer sizes, arsenic and boron were implanted in each fabricated photodiode, and the doping density profiles were analyzed. Electrons that moved onto the silicon surface caused the dark leakage current, which in turn brought up the speckle defect on the display image in the CIS.

A Study on the Etched Volume of Carbon Nanotube in the Single CNT Tip (단일 CNT 팁에서 탄소나노튜브의 에칭부피에 관한 연구)

  • Lee, Jun-Sok;Choi, Jai-Seong;Kang, Gyung-Soo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1126-1129
    • /
    • 2004
  • Because of the various length condition of carbon nanotube, it is very confined the application area of the single CNT tip. In this paper, it was proposed the cutting technique of single CNT tip and the relationship between the etched volume and the amount of the applied charge. It is possible to control the length of single CNT tip arbitrary using this technique. The etched volume and length in the single CNT tip can be predicted with the amount of the applied charge. It is very easy to make a single CNT tip with proper length using this technique and to make nanotweezer that was composed two single CNT tips.

  • PDF

Electrochemical Fabrication of Multi Microelectrodes (전해 가공 방법을 이용한 다중 마이크로 전극 제작)

  • Kwon, Soon-Geun;Lim, Hyung-Jun;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1136-1141
    • /
    • 2004
  • In recent years, demands on microelectrode have been greatly enhanced because of its potential applications and mass production of microelectrodes is needed. An electrochemical fabrication is used as an method for the simple and cheap fabrication of multi microelectrodes. In this paper, one dimensional microelectrode array is used for fabricating of multi electrodes. A diffusion layer which is formed near the electrode surface has an effect on the shape error of multi microelectrodes. The optimal distance between electrodes to minimize shape errors of multi electrodes is investigated. Multi microelectrodes which has several tens of and hundreds of micrometer in diameter are fabricated at a time.

  • PDF

Development of Micro-machined Heat Flux Sensor by using MEMS technology (MEMS를 이용한 미세 열유속센서의 개발)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1364-1369
    • /
    • 2004
  • New method for the design, fabrication, and calibration of micro-machined heat flux sensor has been developed. Two types of micro-machined heat flux sensor having different thicknesses of the thermal-resistance layer are fabricated using the MEMS technique. Photo-resist patterning using a chrome mask, bulk-etching and copper-nickel sputtering using a shadow mask are applied to make heat flux sensors, which are calibrated in the convection-type heat flux calibration facility. The sensitivity of the device varies with thermal-resistance layer, and hence can be used to measure the heat flux in heat-transfer phenomena.

  • PDF

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck (Si-adhesive 층의 불량에 따른 정전척 온도분포)

  • Lee, Ki Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

Etching and Polishing Behavior of Cu thin film according to the additive chemicals

  • Ryu, Ju-Suk;Eom, Dae-Hong;Hong, Yi-Koan;Park, Jum-Yong;Park, Jin-Goo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.274-278
    • /
    • 2002
  • The purpose of this study was to characterize the reaction of Cu surface with Cu slurry and CMP performance as a function of additives in CMP slurry. The polish rate of Cu was dependent on the kind of organic acids added in slurry. It was considered that polish rate of Cu was dependent on the concentration of carboxylates and mean particle size. When the etchant and oxidant were added in slurry, the highest removal rate and lower etch rate were measured at neutral pH. The addition of etchant, oxidant and pH adjustor played key roles of CMP ability in slurry. As the pH increased, polish rate of Cu was increased by the enhanced the mechanical effects due to effective dispersion of slurry particles. Alumina abrasives was more desirable for 1st step slurry because of high removal rate of Cu and high selectivity ratio among TaN and Cu.

  • PDF

VOA fabrication with symmetric actuator (대칭구동기를 갖는 가변 광 감쇄기의 제작)

  • Kim, Tae-Youp;Hur, Jae-Sung;Moon, Sung;Shin, Hyun-Joon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1912-1913
    • /
    • 2003
  • This paper presents a variable optical attenuator (VOA) that is fabricated using bosch deep silicon etching process [1] with silicon-on- insulator (SOI) wafer. The VOA consists of driving electrode, ground electrode, actuating mirror, and mechanical slower. In this VOA, actuating mirror is driven by electrostatic force [2] and the pull-in voltage is close to 13V, 28 V, 46V come along with the spring width of $3{\mu}m,\;5{\mu}m,\;7{\mu}m$ respectively.

  • PDF

A Fabrication Method of Blade Type Tip for Probe Unit Device (프르브유닛 소자용 블레이드형 팁 제조방법)

  • Lee, Keun-Woo;Lee, Jae-Hong;Kim, Chang-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1436-1440
    • /
    • 2007
  • Beryllium copper has been known to be an important material for the various fields of industry because it can be used for mechanical and electrical/electronic components that are subjected to elevated temperatures (up to $400^{\circ}C$ for short times). Blade type tip for probing the cells of liquid crystal display(LCD) was fabricated using beryllium copper foil. The dry film resist was employed as a mask for patterning of the blade type tip. The beryllium copper foil was etched using hydrochloric acidic iron-chloride solution. The concentration, temperature, and composition ratio of hydrochloric acidic iron-chloride solution affect the etching characteristics of beryllium copper foil. Nickel with the thickness of $3{\mu}m$ was electroplated on the patterned copper beryllium foil for enhancing its hardness, followed by electroplating gold for increasing its electrical conductivity. Finally, the dry film resist on the bridge was removed and half of the nickel was etched to complete the blade type tip.