• Title/Summary/Keyword: Measured Frequency

Search Result 7,645, Processing Time 0.045 seconds

A Study of Muscle Fatigue in Lumbar and Abdominal Muscles in Patients with Chronic Low Back Pain by Electromyographic Power Spectral Analysis (근전도 스펙트럼 분석을 이용한 만성 요통 환자의 요부근육과 복부근육의 피로도 분석)

  • Nam, Ki-Seok;Lee, Young-Hee;Yi, Chung-Hwi;Cho, Sang-Hyun
    • Physical Therapy Korea
    • /
    • v.6 no.2
    • /
    • pp.16-31
    • /
    • 1999
  • The purpose of this study was to assess the fatigue in lumbar and abdominal muscles in patients with chronic low back pain compared with normal subjects using spectral analysis with mean power frequency and median power frequency. The experimental group consisted of twenty subjects who had experienced chronic low back pain for over one year after the onset day. A control group consisted of twenty normal subjects with no history of low back pain. All subjects stood in an apparatus to perform sustained contraction in the lumbar and abdominal muscles for 30 seconds with 60% maximal voluntary isometric contraction (MVIC). The resulting electromyographic (EMG) recorded time serial data were transformed into frequency serial data by Fast Fourier Transformation (FFT). The results were as follows: 1) lumbar muscles measured, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group group (p<0.05). In measured two abdominal muscles (inferior rectus abdominis, obliquus externus abdominis) except superior rectus abdominis, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group (p<0.05). 2) In all three (longissimus thoracis, iliocostalis lumborum, multifidus) lumbar muscles measured, the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). In the two (inferior rectus abdominis, obliquus externus abdominis) abdominal muscles measured (superior rectus abdominis not included), the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). These results suggest that in patients with chronic low back pain there is a trend for more fatigue to occur in both lumbar and abdominal muscles than in the normal control group. This would seem to suggest that in treatment programs for patients with chronic low back pain, improvement of endurance in all trunk muscles should be considered.

  • PDF

Integration of Measured Acceleration to Determine the Vibration Characteristics of Bridges (교량 진동특성 분석을 위한 실측 가속도의 적분)

  • ;;Lee, Sun-Goo;Lee, Mun-Taek
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.107-115
    • /
    • 1996
  • Displacement response is one of the important parameter to determine vibration characteristics of bridge structure. Reliable estimate of displacement response is obtained economically from integration of measured acceleration data in frequency domain. Proper sampling rate of frequency in discretization process of measured acceleration is proposed. Comparison of integrated and directly measured displacement response from laboratory experiment for a cantilever beam shows good agreement each other. Mode shape obtained from estimated displacement response also closely match with analytical result, thus the developed method is proved to be effective in practical use.

  • PDF

Microstrip Line Fed Rectangular Microstrip Patch Antenna and its Array (마이크로스트립 전송선으로 급전되는 사각형 마이크로스트립 패치 안테나 및 배열 안테나에 관한 해석 및 실험)

  • 박동국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.152-156
    • /
    • 1989
  • Parameters of a microstrip patch antenna such as the resonant frequency, radiation conductance, and the bandwidth are calculated. The rectangular microstrip patch antenna fed by a microstrip transmission line is fabricated and its resonant frequency, radiation pattern, and input voltage standing wave ratio are measured. The measured resonant frequency for 13.0mm$\times$9.7mm copper clad woven PTFE/glass laminate plate is 9.06Ghz, where the calculative is 9.00Ghz. And the measured vswr shows that the bandwidth of the antenna is 225MHz for vswr less then 2.0 which the calculated quality factor of the patch gives the bandwidth OF 280ghZ. The measured radiation pattern for 5 element as well as 4 element patch array shows less then 4dB deviation in the first side lobes from the designed values for both E and H plane pattern. This diviation is believed to be the power division errors of the power divider.

  • PDF

Estimation of Excitation Forces from Measured Response Data (진동응답 계측결과를 이용한 기진력의 추정)

  • 한상보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-60
    • /
    • 1995
  • It is attempted to estimate excitation force of a linear vibratory system using measured vibration responses. The excitation force is estimated from the relationship between the vibration response and system characteristic matrices which are extracted from both the mathematical model of the system and actual response in contrast to the usual approach of inverting the frequency response matrices. This extraction scheme is based on the fact that the vibration response can be expressed in term of linear combination of frequency domain modal vectors defined as mutually orthonormal basis vectors in frequency domain. The extracted frequency domain basis vectors are very stable in computational manipulation. It is found that the estimated excitation force is in good agreement with actually measured force except at the natural frequencies the structure, which is the common feature still to be overcome by the research efforts in this area. From the results of this paper, this disagreement is considered to come from the discrepancy between the model and actual value of the mass, damping and stiffness of the structure.

Predicting the Frequency of Combustion Instability Using the Measured Reflection Coefficient through Acoustic Excitation

  • Bae, Jinhyun;Yoon, Jisu;Joo, Seongpil;Kim, Jeoungjin;Jeong, Chanyeong;Sohn, Chae Hoon;Borovik, Igor N.;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.797-806
    • /
    • 2017
  • In this study, the reflection coefficient (RC) and the flame transfer function (FTF) were measured by applying acoustic excitation to a duct-type model combustor and were used to predict the frequency of the combustion instability (CI). The RC is a value that varies with the excitation frequency and the geometry of the combustor as well as other factors. Therefore, in this study, an experimentally measured RC was used to improve the accuracy of prediction in the cases of 25% and 75% hydrogen in a mixture of hydrogen and methane as a fuel. When the measured RCs were used, an unstable condition was correctly predicted, which had not been predicted when the RCs had been assumed to be a certain value. The reason why the CI occurred at a specific frequency was also examined by comparing the peak of the FTF with the resonance frequency, which was calculated using Helmholtz's resonator analysis and a resonance frequency equation. As the CI occurred owing to the interaction between the perturbation in the rate of heat release and that in the pressure, the CI was frequent when the peak of the FTF was close to the resonance frequency such that constructive interference could occur.

Circularly Polarized Square Ring Slot Antenna with Arrow-Shaped Structure

  • Sung, Young-Je
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.506-509
    • /
    • 2009
  • A novel design of a compact square-ring slot microstrip antenna for achieving circular polarization (CP) operation is proposed and experimentally studied. By using an arrow-shaped slot structure as a radiating element, the resonant frequency of the proposed antenna is significantly lowered, which can lead to a large size reduction for fixed frequency operation. The CP radiation characteristics are achieved by loading with proper asymmetry, which can be placed diagonally. A prototype of the proposed design is implemented and its performance is measured. Measured results show that radiation patterns with good CP characteristics are obtained at the resonant frequency.

Dynamic Characterizations of a Piezoelectric Microactuator in Hard Disk Drive (HDD용 압전형 마이크로엑츄에이터의 동특성 규명)

  • Kim, Cheol-Soon;Kim, Kyu-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • To provide model parameters for servo control system design, dynamic characteristics of a piezoelectric microactuator for hard disk drive(HDD) were investigated. At first frequency response characteristics was measured and a second order model was proposed. Here the amplitude dependent dynamic characteristics such as low frequency gain and damping ratio were studied. In addition, the load current and equivalent impedance of the piezoelectric actuator were measured by varying excitation voltage and frequency. At last, the super-harmonic resonance of the piezoelectric actuator was discussed.

  • PDF

A Study on the Characteristics of Cooperating Charge considering Dominant Frequency (주 주파수를 고려한 협동장약 특성에 관한 연구)

  • Kim Jong-In;Kang Choo-Won
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.316-323
    • /
    • 2005
  • As a result of waveform analysis, the separation of waveform found that high frequency well accomplishes but low frequency doesn't accomplish that. The data which measured less than 60 Hz and more than 60 Hz was analysed to examine the relation between cooperating charge and frequency. The measured data of more than 70 Hz was also analysed to consider the characteristics of high frequency.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF