• Title/Summary/Keyword: Measured Bio-data

Search Result 312, Processing Time 0.032 seconds

Implementation of U-Healthcare System for Chronic Disease Management (만성 질환자 관리를 위한 U-Healthcare 시스템 구현)

  • Ryu, Geun-Teak;Choi, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.233-240
    • /
    • 2014
  • According to the recent increasing trend of the ages, numbers of patients with chronic diseases are increasing and issues for health care are importantly emerged. In this thesis the research implements U-health care system for health care of patients with chronic diseases. The suggested system for health care of patients with chronic diseases composes bio measurement system, mobile gateway and medical information management server, and bio-signals are composed with modules such as electrocardiogram, blood pressure, blood sugar, oxygen saturation if configured as client. Blood sugar check was considered and implemented to be chosen the ways to transmit through bio measurement system or through gateway. Suggested bio measurement system and mobile gateway are transmitted through Bluetooth. The transmitted biodata is searched by observing health check through mobile gateway, by transmitting through network server, and by using client. By implementing bio signal observation system of patients with chronic diseases, present health check is available by monitoring measured bio data, and various bio signals are transmitted in the mobile environment.

Simulation study on draft force prediction of moldboard plow according to cohesive soil particle size using the discrete element method (이산요소법을 활용한 점성토 환경에서의 토양 입자 크기에 따른 몰드보드 플라우 견인력 예측 시뮬레이션)

  • Min Seung Kim;Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.46-55
    • /
    • 2024
  • In the agricultural machinery field, load analysis is mostly done through field tests. However, field tests are time-consuming and costly. There are also limitations in test conditions due to weather conditions. To overcome these environmental limitations, research on load analysis through simulation in a virtual environment is actively being conducted. This study aimed to select the most appropriate soil particle size for modeling by analyzing the effect of soil particle size on the prediction of draft force of the implement using simulation and soil particle modeling in a virtual environment with the discrete element method (DEM) software. The accuracy was verified by simulating the draft force for the same moving speed by soil particle size. For soil particle modeling, DEM soil modeling was performed by designing soil property measurement procedure. Soil particle correction was performed with a virtual vane shear test. Average DEM simulation results showed an error of 27.39% (19.43~40.66%) compared to actual measured data. The possibility of improvement was confirmed through additional research. Results of this study provide useful information for selecting soil particle size in soil modeling using DEM from the perspective of agricultural machinery research.

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.

Safety Evaluation of Individual Intersection Considering the Bio-Response (Electroencephalography) and the Cognitive Characteristics (생체반응(뇌파)과 인지평가 특성에 의한 개별 교차로 안전성 평가에 관한 연구)

  • Namgung, Moon;Lee, Byung Joo;Seo, Im Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.231-240
    • /
    • 2010
  • As majority of the traffic accidents in intersections is caused by human factor, a close examination is required on its contributing factors through measuring the psychological and physiological response according to the driving characteristics of the drivers and the road conditions. In this study, for the safety evaluation of individual intersection considering human factors of the drivers, electroencephalography reaction was measured utilizing cutting-edge measuring equipment and survey on drivers' cognitive characteristics in ordinary times and while driving test was conducted. The relationship between the electroencephalography response when approaching the intersection and cognitive evaluation survey data in driving test was clarified, and individual intersection safety evaluation model was built considering cognitive evaluation factor and the reaction of a bio-response electroencephalography data. As a result, I could find out that cognitive evaluation was made through the reaction of a bio-response (Electroencephalography) process because electroencephalography reaction of a bio-response showed differently by the physical characteristics of the intersection and cognitive evaluation had a difference.

Factors influencing the bio-impedance data in tissue segments along the three arm meridians: a pilot study

  • Lim, Chi Eung Danforn;Wong, Felix Wu Shun;Smith, Warren
    • CELLMED
    • /
    • v.1 no.1
    • /
    • pp.7.1-7.9
    • /
    • 2011
  • Bioelectric impedance measurements have been reported to show significant variation between individuals. Different physiological conditions like thickened skin, obesity, and fluid retention can affect the impedance measurement. Therefore, it is important to learn what other factors can affect the measurements of impedance even in healthy individuals. Such information is a prerequisite for understanding the changes in impedance associated with acupuncture treatment. This study investigated the bio-impedance properties of tissue segments in the arms of a number of healthy subjects, so as to define the factors that might influence the variation of the bio-impedance data in acupuncture meridians studies. 51 healthy subjects were recruited through Liverpool Hospital, Sydney. Demographic data was collected from each subject including the age, sex, BMI, and time since most recent meal. Electrodes were applied to the forearms of each test subject. Measurements were done by a purpose-built Bio-Impedance Research Device (BIRD-I) which allowed the determination of core resistance (Rc) and core reactance (Xc) of each of the three meridian tissue segments on the anterior surface of the forearm. No significant difference was found in the core resistance attributable to age group, gender, BMI or meal intake. However, a statistically significant trend in increasing resistance from the radial to ulnar aspect of the forearm (p < 0.001) was found. No significant difference was found in the core resistance of test tissue segments among the 51 healthy subjects measured in this study. However, the trend of increasing core resistance from the radial to ulnar aspects of the arm deserves further investigation.

A Study on the Trend of Employment Effect and Employment Policy in the Digital Bio-healthcare Industry (디지털바이오헬스케어산업의 고용효과 추이 변화와 고용정책에 관한 연구)

  • Jang, Pil-Ho;Kim, Yong-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.175-182
    • /
    • 2021
  • The purpose of this study is to establish the direction of industrial policy by comparing the employment inducement effect on the related industries of the digital bio-healthcare industry. The analysis data used the three-year input-output table measured by the Bank of Korea. First, the research method was rewritten into 7 major industries to compare statistical data by period. Second, the Bank of Korea's industry-related analysis methodology was utilized. Third, the weight was reflected and compared by employment, production, and investment sectors of the digital bio-healthcare industry. As a result of the analysis, first, the employment sector had a higher effect than the average of the entire industry, second, the production sector was low, and third, the investment sector required investment in the service sector. The conclusions drawn from the analysis showed that direct investment and continuous investment are required in the employment sector, the development of professional manpower is urgent, and direct investment and long-term investment are effective in the production sector.

Assessment of Driver's Emotional Stability by Using Bio-signals (생체신호 측정을 통한 운전자의 감정적 안정상태 평가)

  • Kim, Jung-Yong;Park, Ji-Soo;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.203-211
    • /
    • 2011
  • Objective: The aim of this study is to introduce a methodology to assess driver's emotion stability by using bio-signals. Background: Psychophysiological analysis of driver's behavior has been conducted to improve the driving safety and comfort. However, the variability of bio-signal and individual difference made it difficult to assess the psychophysiological status of drivers that can be expressed as emotional stability of drivers. Method: Two experimental studies were reviewed and summarized. New techniques assessing emotional stability of drivers were explained. Statistical concept and multidimensional space were used to identify the emotionally stable conditions. Conclusion: Psychophysiological approach can provide information of driver's emotional status. The experimental methodology and algorithm used in this study showed the possibility of parameterization of psychophysiological response. Application: Currently measured statistical and geometrical data can be further applied to develop an interactive device monitoring and reacting driver's emotion when driver experiences emotionally unstable or uncomfortable situation.

Measurement of Variability of Chlorophyll Contents in Paddy Fields Using Two Kinds of Chlorophyll Meter (2종의 엽록소 측정기를 이용한 포장내 벼의 엽록소 함량 분포 측정)

  • 성제훈;서상룡;박우풍;정인규;김상철;이충근
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.245-252
    • /
    • 2003
  • This study was investigated the possibility of measuring chlorophyll in paddy crops using two kinds of chlorophyll meters(SPAD-502, Field Scout). The results of correlation analysis showed the 0.7758(r$^2$) relationship between the chlorophyll contents of paddy leaves measured by SPAD and spectrophotometer. It indicates that chlorophyll content in paddy crops could be measured using the SPAD. Considering the data of the SPAD and Field Scout there was significant difference between their chlorophyll contents measured by the SPAD and Field Scout. Likewise, such results were consistent with the corrected data using light intensity. According to the results, it can be concluded that it is difficult to describe the rice chlorophyll measured by the Field Scout more accurately than the SPAD when using one standard spectrum and another spectrum for reflectance measuring. The chlorophyll variance measured at a research institute and a farmer's field revealed that the output of SPAD was more reliable than that of the Field Scout.

Signl processing method and diagnostic algorithm for arterial oxygen-saturation measument (산소포화도 측정을 위한 신호처리방법 및 계산 알고리즘)

  • 김수진;황돈연;전계진;이종연;정성규;윤길원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.452-456
    • /
    • 2000
  • A measurement unit and signal processing algorithm have been developed for predicting arterial oxygen saturation noninvasively. The measurement set-up was composed of a probe including light source and photodetector, optical signal processing section, LED driving circuit, PC interface software for data acquisition and data processing software. Light from the LED's was irradiated onto the finger nail bed and transmitted light was measured at different wavelengths. An effective baseline correction method was developed and measured data were analyzed by using various data processing methods and prediction algOlithms. For performance evaluation, a pulse oximeter simulator (Bio- Tek Instrument Inc.) was used as reference. The best performance in terms of the correlation coefficient and the standard deviation was obtained under the following conditions; when the arterial signals were computed in terms of area rather than peak-valley difference, and when the algorithm calculating by $In(I_p/I_v)/I_{avr}$ value for pulsation waveform was used. In in vivo test, prediction was improved when the developed baseline correction method was used. In addition, wavelengths of 660 nm and 940 nm provided better linearity and precision than wavelengths of 660 nm and 805 nm. 05 nm.

  • PDF

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.