• 제목/요약/키워드: Mean curvature

검색결과 361건 처리시간 0.027초

RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

  • De Lima, Henrique Fernandes
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.97-103
    • /
    • 2013
  • As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the $(n+1)$-dimensional hyperbolic space $\mathbb{H}^{n+1}$. In our approach, we explore the existence of a natural duality between $\mathbb{H}^{n+1}$ and the half $\mathcal{H}^{n+1}$ of the de Sitter space $\mathbb{S}_1^{n+1}$, which models the so-called steady state space.

VANISHING OF PROJECTIVE VECTOR FIELDS ON COMPACT FINSLER MANIFOLDS

  • Shen, Bin
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.1-16
    • /
    • 2018
  • In this paper, we give characteristic differential equations of a kind of projective vector fields on Finsler manifolds. Using these equations, we prove the vanishing theorem of projective vector fields on any compact Finsler manifold with the negative mean Ricci curvature, which is defined in [10]. This result involves the vanishing theorem of Killing vector fields in the Riemannian case and the work of [1, 14].

On generic submanifolds of a complex projective space

  • Seong Baek Lee;Seung Gook Han;Nam Gil Kim;Seong Soo Ahn
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.743-756
    • /
    • 1996
  • The purpose of this paper is to compute the covariant derivative of a shape operator of a generic submanifold of a complex space form without using the Green-Stoke's theorem. In particular, we classify complete generic submanifolds of a complex number space $C^m$ with parallel mean curvature vector satisfying a certain condition.

  • PDF

ON A CHARACTERIZATION OF ROUND SPHERES

  • Onat, Leyla
    • 대한수학회보
    • /
    • 제39권4호
    • /
    • pp.681-685
    • /
    • 2002
  • It is shown that, an immersion of n-dimensional compact manifold without boundary into (n + 1)-dimensional Euclidean space, hyperbolic space or the open half spheres, is a totally umbilic immersion if for some r, r =2, 3, …, n the r-th mean curvature Hr does not vanish and there are nonnegative constants $C_1$, $C_2$, …, $C_{r}$ such that (equation omitted)d)

LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE

  • Park, Joon-Sang
    • 대한수학회지
    • /
    • 제45권1호
    • /
    • pp.41-61
    • /
    • 2008
  • We study Lorentzian surfaces with the constant Gaussian curvatures or the constant mean curvatures in the 3-dimensional Lorentzian space and their transformations. Such surfaces are associated to the Lorentzian Grassmannian systems and some transformations on such surfaces are given by dressing actions on those systems.

ON NULL SCROLLS SATISFYING THE CONDITION ${\triangle}$H = AH

  • Pak, Jin-Suk;Yoon, Dae-Won
    • 대한수학회논문집
    • /
    • 제15권3호
    • /
    • pp.533-540
    • /
    • 2000
  • In the present paper, we study a non-degenrate ruled surface along a null curve in a 3-dimensional Minkowski space E31, which is called a null scroll, an investigate some characterizations of null scrolls satisfying the condition H=AH, A Mat(3, ), where denotes the Laplacian of the surface with respect to the induced metric, H the mean curvature vector and Mat(3, ) the set of 3$\times$3-real matrices.

  • PDF

On Ruled Surfaces with a Sannia Frame in Euclidean 3-space

  • Senyurt, Suleyman;Eren, Kemal
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.509-531
    • /
    • 2022
  • In this paper we define a new family of ruled surfaces using an othonormal Sannia frame defined on a base consisting of the striction curve of the tangent, the principal normal, the binormal and the Darboux ruled surface. We examine characterizations of these surfaces by first and second fundamental forms, and mean and Gaussian curvatures. Based on these characterizations, we provide conditions under which these ruled surfaces are developable and minimal. Finally, we present some examples and pictures of each of the corresponding ruled surfaces.

SOME SPECIAL SMARANDACHE RULED SURFACES BY FRENET FRAME IN E3-II

  • Suleyman, Senyurt;Davut, Canli;Elif, Can;Sumeyye Gur, Mazlum
    • 호남수학학술지
    • /
    • 제44권4호
    • /
    • pp.594-617
    • /
    • 2022
  • In this study, firstly Smarandache ruled surfaces whose base curves are Smarandache curves derived from Frenet vectors of the curve, and whose direction vectors are unit vectors plotting Smarandache curves, are created. Then, the Gaussian and mean curvatures of the obtained ruled surfaces are calculated separately, and the conditions to be developable or minimal for the surfaces are given. Finally, the examples are given for each surface and the graphs of these surfaces are drawn.

RICCI CURVATURE OF INTEGRAL SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • 대한수학회보
    • /
    • 제44권3호
    • /
    • pp.395-406
    • /
    • 2007
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for an integral submanifold of an S-space form. By polarization, we get a basic inequality for Ricci tensor also. Equality cases are also discussed. By giving a very simple proof we show that if an integral submanifold of maximum dimension of an S-space form satisfies the equality case, then it must be minimal. These results are applied to get corresponding results for C-totally real submanifolds of a Sasakian space form and for totally real submanifolds of a complex space form.