On Ruled Surfaces with a Sannia Frame in Euclidean 3-space

Süleyman Şenyurt*
Department of Mathematics, Ordu University, Ordu, Turkey
e-mail : senyurtsuleyman52@gmail.com
Kemal Eren
Department of Mathematics, Sakarya University, Sakarya, Turkey
e-mail: kemal.eren1@ogr.sakarya.edu.tr

AbSTRACT. In this paper we define a new family of ruled surfaces using an othonormal Sannia frame defined on a base consisting of the striction curve of the tangent, the principal normal, the binormal and the Darboux ruled surface. We examine characterizations of these surfaces by first and second fundamental forms, and mean and Gaussian curvatures. Based on these characterizations, we provide conditions under which these ruled surfaces are developable and minimal. Finally, we present some examples and pictures of each of the corresponding ruled surfaces.

1. Introduction

A surface is the image of a function with two real variables in three dimensional space. Geometric shapes such as planes, cylinders, cones, and spheres are examples of surfaces. Surfaces are used in such applications as architectural structures, computer graphics, works of art, geometric design, textile and automobile design. Surface theory is an important field of study in differential geometry; the basic theory can be found, for example, $[1,2,3]$. Developable surfaces, in particular, are widely used in industrial applications. Ruled surface have also been widely studied, $[4,10]$. Ruled surfaces are called linear surfaces because they are formed by moving a line along a curve, so are represented by an infinite family of straight lines. A generalization of ruled surfaces was introduced by Juza in the 1960s and has since by well studied [5]. The striction point, the striction curve and the dis-

[^0]tribution parameter (Drall) of a ruled surface with a Frenet frame in 3-dimensional Euclidean space were considered in $[6,7]$. Some characteristic properties of a ruled surface with a Frenet frame of a non-cylindrical ruled surface were investigated by Ouarab and Chahdi [8]. On the other hand, Pottmann and Wallner expressed the orthonormal Sannia frame on the striction curve of a ruled surface in 3-dimensional Euclidean space [9].
The aim of this study is to examine a ruled surface with the orthonormal Sannia frame defined on the striction curve of the tangent, normal, binormal and Darboux ruled surfaces.

2. Preliminaries

Let E^{3} be a 3 -dimensional Euclidean space provided with the standard flat metric given by

$$
<,>=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of E^{3}. Let α be a space curve with respect to the arclength s in E^{3}, and let T, N and B be the tangent, principal normal and binormal unit vectors at a point $\alpha(s)$ of the curve α, respectively. There exists an orthogonal frame $\{T, N, B\}$ which satisfies the Frenet-Serret equations,

$$
\begin{equation*}
T^{\prime}=\kappa N, \quad N^{\prime}=-\kappa T+\tau B, \quad B^{\prime}=-\tau N, \tag{2.1}
\end{equation*}
$$

where κ is the curvature, τ is the torsion of the curve $\alpha[2]$. The surface obtained by a line r moving along a differentiable curve α is called a ruled surface and its parametric equation is given by

$$
\begin{equation*}
X(s, v)=\alpha(s)+v r(s) \tag{2.2}
\end{equation*}
$$

The curve α is called the base curve and the straight line r is called the ruling of the ruled surface [11]. Specifically, if the Frenet vectors of the curve are taken instead of r, the equations of the surfaces are obtained by

$$
\begin{aligned}
& X_{T}(s, v)=\alpha(s)+v T(s), \\
& X_{N}(s, v)=\alpha(s)+v N(s), \\
& X_{B}(s, v)=\alpha(s)+v B(s) .
\end{aligned}
$$

The normal vector field, the components of first and second fundamental forms, the Gaussian curvature and the mean curvature of a surface are computed as

$$
\begin{equation*}
u_{X}=\frac{X_{s} \times X_{v}}{\left\|X_{s} \times X_{v}\right\|} \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
E=\left\langle X_{s}, X_{s}\right\rangle, \quad F=\left\langle X_{s}, X_{v}\right\rangle, \\
G=\left\langle X_{v}, X_{v}\right\rangle, l=\left\langle X_{s s}, u_{X}\right\rangle, \tag{2.4}\\
m=\left\langle X_{s v}, u_{X}\right\rangle, \quad n=\left\langle X_{v v}, u_{X}\right\rangle, \\
K=\frac{l n-m^{2}}{E G-F^{2}}, \quad H=\frac{E n-2 F m+G l}{2\left(E G-F^{2}\right)}, \tag{2.5}
\end{gather*}
$$

respectively [11]. Frenet vectors of a curve make an instantaneous rotation along the curve and around an axis that is called as the axis of rotation. The Darboux vector W points in the direction of the rotational axis and is calculated by

$$
W=\tau T+\kappa B
$$

The unit Darboux vector C, on the other hand, can be computed as following

$$
C=\sin \varphi T+\cos \varphi B, \quad \sin \varphi=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}, \quad \cos \varphi=\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}}
$$

where the angle φ is between the Darboux vector W and the binormal vector B of the moving curve [12]. The parametric equation of the ruled surface created by the moving the vector C along the curve α is

$$
X_{C}(s, v)=\alpha(s)+v C(s)
$$

If there exist a common perpendicular to two consecutive ruling in the ruled surface, then the foot of the common perpendicular on the main ruling is called a striction point and the set of these points is also defined as the striction curve. The equation of the striction curve of the ruled surface given in (2.2) can be written by

$$
\begin{equation*}
\beta(s)=\alpha(s)-\frac{\left\langle\alpha^{\prime}, r^{\prime}\right\rangle}{\left\|r^{\prime}\right\|^{2}} r \tag{2.6}
\end{equation*}
$$

[6]. Specifically, if the striction curve is taken to be the base curve on the surface, then the parametric equation of the ruled surface is given as

$$
X(s, v)=\beta(s)+v r(s)
$$

Let the curve β be a striction curve of the ruled surface $X(s, v)$. The Sannia orthonormal frame [9] is the orthanormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ created by unit vectors along the striction curve β such that

$$
\begin{equation*}
e_{1}=r, \quad e_{2}=\frac{e^{\prime}{ }_{1}}{\left\|e^{\prime}{ }_{1}\right\|}, \quad e_{3}=e_{1} \wedge e_{2} \tag{2.7}
\end{equation*}
$$

where r is the ruling of the ruled surface $X(s, v)$. The Sannia formulae along the striction curve become

$$
e_{1}^{\prime}=k_{1} e_{2}, \quad e_{2}^{\prime}=-k_{1} e_{1}+k_{2} e_{3}, \quad e_{3}^{\prime}=-k_{2} e_{2}
$$

where k_{1} and k_{2} are the curvature and the torsion of the striction curve of the ruled surface $X(s, v)[9]$.

3. Ruled Surfaces with Sannia Frames

In this section, we examine the ruled surfaces formed by Sannia frames along the striction curves of ruled surfaces generated by Frenet vectors of a curve. The surfaces obtained are called Sannia ruled surfaces. The relation between the Sannia and Frenet frame, the first and second fundamental forms, and the Gaussian and the mean curvatures of each ruled surface are calculated separately.

3.1. Sannia ruled surfaces associated with tangent ruled surface

Theorem 3.1. Let X_{T} be a tangent ruled surface and $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a Sannia frame on the striction curve of X_{T}. Then, the relationship between the Sannia frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ on striction curve and the Frenet frame $\{T, N, B\}$ is as follows:

$$
\begin{equation*}
e_{1}=T, \quad e_{2}=N, \quad e_{3}=B \tag{3.1}
\end{equation*}
$$

Proof. Let the curve ζ be a striction curve of the tangent ruled surface X_{T}. Using (2.6), it can be easily shown that the striction curve ζ is equal to the base curve of X_{T}, i.e. $\zeta(s)=\alpha(s)$. Therefore, the equation (3.1) is satisfied.

Definition 3.2. A surface Φ_{1} is called a e_{1} Sannia ruled surface in Euclidean 3space, if the surface Φ_{1} is generated by moving the vector e_{1} along the striction curve ζ of X_{T} and its parametric equation is defined as

$$
\begin{equation*}
\Phi_{1}(s, v)=\zeta(s)+v e_{1}(s) \tag{3.2}
\end{equation*}
$$

Taking the partial differential of Φ_{1} with respect to s and v, we get

$$
\Phi_{1 s}=T+v \kappa N \text { and } \Phi_{1 v}=T
$$

By (2.3), the normal vector field of Φ_{1}, which is denoted by $u_{e_{1}}$, is found as

$$
u_{e_{1}}(s, v)=-B
$$

Theorem 3.3. Let Φ_{1} be a e_{1} Sannia ruled surface in E^{3}. Then, the first and the second fundamental form, the Gaussian curvature and the mean curvature of Φ_{1} are calculated as

$$
\begin{aligned}
I_{e_{1}} & =\left(1+v^{2} \kappa^{2}\right) d s^{2}+2 d s d v+d v^{2} \\
I I_{e_{1}} & =-v \kappa \tau d s^{2} \\
K_{e_{1}} & =0, \quad H_{e_{1}}=\frac{\tau}{2 v \kappa}
\end{aligned}
$$

$\kappa \neq 0$, respectively.
Proof. Taking the second order partial differentials of the surface Φ_{1} given by (3.2) with respect to s and v, we get

$$
\begin{aligned}
& \Phi_{1 s s}=\kappa N+v\left(-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B\right) \\
& \Phi_{1 s v}=\kappa N, \quad \Phi_{1 v v}=0
\end{aligned}
$$

Using the equation (2.4), the components of the first and the second fundamental form of Φ_{1} are obtained as follows:

$$
\begin{aligned}
& E_{e_{1}}=1+v^{2} \kappa^{2}, \quad F_{e_{1}}=1, \quad G_{e_{1}}=1 \\
& l_{e_{1}}=-v \kappa \tau, \quad m_{e_{1}}=0, \quad n_{e_{1}}=0
\end{aligned}
$$

From here, if the last equations are substituted in the equation (2.5), the proof is complete.

Corollary 3.4. Let X_{T} and Φ_{1} be a tangent ruled surface with base curve α and a e_{1} Sannia ruled surface with base curve ζ which is striction curve of X_{T}, respectively. Then, the surfaces X_{T} and Φ_{1} are the same surfaces.

Corollary 3.5. Let X_{T} and Φ_{1} be the tangent ruled surface with base curve α and e_{1} Sannia ruled surface with base curve ζ which is striction curve of X_{T}, respectively. If the striction curve ζ of X_{T} is planar curve, the e_{1} Sannia ruled surface is developable and the minimal surface.

Definition 3.6. A surface Φ_{2} is called a e_{2} Sannia ruled surface in Euclidean 3space, if the surface Φ_{2} is generated by moving the vector e_{2} along the striction curve ζ of X_{T} and its parametrical equation is defined as

$$
\begin{equation*}
\Phi_{2}(s, v)=\zeta(s)+v e_{2}(s) \tag{3.3}
\end{equation*}
$$

Taking the first order partial differentials of Φ_{2} with respect to s and v, we have

$$
\Phi_{2 s}=(1-v \kappa) T+v \tau B \text { and } \Phi_{2 v}=N
$$

So, by (2.3), the normal vector field $u_{e_{2}}$ of Φ_{2} is obtained as

$$
u_{e_{2}}(s, v)=\frac{-v \tau T+(1-v \kappa) B}{\sqrt{v^{2} \tau^{2}+(1-v \kappa)^{2}}}
$$

Theorem 3.7. Let Φ_{2} be a e_{2} Sannia ruled surface in E^{3}. Then, the first and the second fundamental forms, the Gaussian curvature and the mean curvature of Φ_{2}
are given as

$$
\begin{aligned}
I_{e_{2}} & =\left((1-v \kappa)^{2}+(v \tau)^{2}\right) d s^{2}+d v^{2} \\
I I_{e_{2}} & =\frac{v^{2}\left(\tau \kappa^{\prime}-\tau^{\prime} \kappa\right)+v \tau^{\prime}}{\sqrt{v^{2} \tau^{2}+(1-v \kappa)^{2}}} d s^{2}+\frac{2 \tau}{\sqrt{v^{2} \tau^{2}+(1-v \kappa)^{2}}} d s d v, \\
K_{e_{2}} & =-\frac{\tau^{2}}{\left(v^{2} \tau^{2}+(1-v \kappa)^{2}\right)^{2}}, \quad H_{e_{2}}=\frac{v^{2}\left(\tau \kappa^{\prime}-\tau^{\prime} \kappa\right)+v \tau^{\prime}}{2\left(v^{2} \tau^{2}+(1-v \kappa)^{2}\right)^{\frac{3}{2}}},
\end{aligned}
$$

respectively.

Proof. Taking the second order partial differentials of the surface Φ_{2} given by (3.3) with respect to s and v, we get

$$
\begin{aligned}
& \Phi_{2 s s}=\kappa N+v\left(-\kappa^{\prime} T-\left(\kappa^{2}+\tau^{2}\right) N+\tau^{\prime} B\right), \\
& \varphi_{2 s v}=-\kappa T+\tau B, \quad \varphi_{2 v v}=0 .
\end{aligned}
$$

From equations (2.4), the components of the first and the second fundamental form of Φ_{2} are obtained as follows:

$$
\begin{aligned}
& E_{e_{2}}=(1-v \kappa)^{2}+(v \tau)^{2}, \quad F_{e_{2}}=0, \quad G_{e_{2}}=1 \\
& l_{e_{2}}=\frac{v^{2}\left(\tau \kappa^{\prime}-\tau^{\prime} \kappa\right)+v \tau^{\prime}}{\sqrt{v^{2} \tau^{2}+(1-v \kappa)^{2}}}, \quad m_{e_{2}}=\frac{\tau}{\sqrt{v^{2} \tau^{2}+(1-v \kappa)^{2}}}, \quad n_{e_{2}}=0 .
\end{aligned}
$$

From here, if these equations are substituted in the equation (2.5), the proof is complete.

Corollary 3.8. Let X_{T} and Φ_{2} a be tangent ruled surface with base curve α and e_{2} Sannia ruled surface with base curve ζ which is striction curve of X_{T}, respectively. If the striction curve ζ of X_{T} is planar curve, the ruled surface Φ_{2} with the Sannia frame is developable and the minimal surface. Also, since $K_{e_{2}}<0$, all points of the ruled surface Φ_{2} are hyperbolic points.
Definition 3.9. A surface Φ_{3} is called a e_{3} Sannia ruled surface in Euclidean 3space, if the surface Φ_{3} is generated by moving the vector e_{3} along the striction curve ζ of X_{T} and its parametrical equation is defined as

$$
\begin{equation*}
\Phi_{3}(s, v)=\zeta(s)+v e_{3}(s) \tag{3.4}
\end{equation*}
$$

Taking the first order partial differentials of Φ_{3} with respect to s and v, we have

$$
\Phi_{3_{s}}=T-v \tau N \text { and } \Phi_{3 v}=B
$$

So, by considering (2.3) the normal vector field $u_{e_{3}}$ of Φ_{3} is obtained as

$$
u_{e_{3}}(s, v)=-\frac{v \tau T+N}{\sqrt{1+(v \tau)^{2}}}
$$

Theorem 3.10. Let Φ_{3} be a e_{3} Sannia ruled surface in E^{3}. Then, the first and the second fundamental forms, the Gaussian curvature and the mean curvature of Φ_{3} are obtained as

$$
\begin{aligned}
& I_{e_{31}}=\left(1+v^{2} \kappa^{2}\right) d s^{2}+d v^{2} \\
& I I_{e_{3}}=-\frac{\kappa\left(1+v^{2} \tau^{2}\right)-v \tau^{\prime}}{\sqrt{1+(v \tau)^{2}}} d s^{2}+\frac{2 \tau}{\sqrt{1+(v \tau)^{2}}} d s d v \\
& K_{e_{3}}=-\frac{\tau^{2}}{\left(1+v^{2} \kappa^{2}\right)^{2}}, \quad H_{e_{3}}=-\frac{\kappa\left(1+v^{2} \tau^{2}\right)-v \tau^{\prime}}{2\left(1+v^{2} \kappa^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

respectively.
Proof. Taking the second order partial differentials of the surface Φ_{3} given by (3.4) with respect to s and v, we reach

$$
\begin{aligned}
& \Phi_{3 s s}=v \tau \kappa T+\left(\kappa-v \tau^{\prime}\right) N-v \tau^{2} B \\
& \Phi_{3 s v}=-\tau N, \quad \Phi_{3 v v}=0
\end{aligned}
$$

So, by recalling the equation (2.4), the components of the first and the second fundamental form of Φ_{3} are given as follows:

$$
\begin{aligned}
E_{e_{3}} & =1+v^{2} \tau^{2}, \quad F_{e_{3}}=0, \quad G_{e_{3}}=1 \\
l_{e_{3}} & =-\frac{\kappa\left(1+v^{2} \tau^{2}\right)-v \tau^{\prime}}{\sqrt{1+(v \tau)^{2}}}, \quad m_{e_{3}}=\frac{\tau}{\sqrt{1+(v \tau)^{2}}}, \quad n_{e_{3}}=0
\end{aligned}
$$

From here, if these equations are substituted in the equation (2.5), the proof is complete.

Example 3.11. Consider the curve

$$
\alpha(s)=\frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right)
$$

with Frenet vectors and the curvatures as follows:

$$
\begin{aligned}
& T=\frac{3}{4}\left(-\sin (s)-\frac{\sin (3 s)}{3}, \cos (s)+\frac{\cos (3 s)}{3}, \frac{2 \sin (s)}{\sqrt{3}}\right), \\
& N=\left(-\frac{\sqrt{3} \cos (2 s)}{2},-\frac{\sqrt{3} \sin (2 s)}{2}, \frac{1}{2}\right), \\
& B=\left(\frac{3 \cos (s)-\cos (3 s)}{4}, \sin (s)^{3}, \frac{\sqrt{3} \cos (s)}{2}\right), \\
& \kappa=\sqrt{3} \cos (s), \tau=\sqrt{3} \sin (s)
\end{aligned}
$$

[10]. Since the striction curve and the base curve of tangent ruled surface are the same curve, the equations of the ruled surfaces with the Sannia frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ are

$$
\begin{aligned}
& \Phi_{1}(s, v)=\frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& +\frac{3}{4} v\left(-\sin (s)-\frac{\sin (3 s)}{3}, \cos (s)+\frac{\cos (3 s)}{3}, \frac{2 \sin (s)}{\sqrt{3}}\right), \\
& \Phi_{2}(s, v)=\frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& +v\left(-\frac{\sqrt{3} \cos (2 s)}{2},-\frac{\sqrt{3} \sin (2 s)}{2}, \frac{1}{2}\right), \\
& \Phi_{3}(s, v)=\frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& +v\left(\frac{3 \cos (s)-\cos (3 s)}{4}, \sin (s)^{3}, \frac{\sqrt{3} \cos (s)}{2}\right),
\end{aligned}
$$

respectively, (Figure.1).

Figure 1: Sannia ruled surfaces associated with tangent ruled surface with $s \in(-1,3)$ and $v \in(-1,1)$

3.2. Sannia ruled surfaces associated with normal ruled surface

Theorem 3.12. Let X_{N} be a normal ruled surface and $\left\{f_{1}, f_{2}, f_{3}\right\}$ be the Sannia frame on the striction curve of X_{N}, denoted by β. Then, the relationship between the Sannia frame $\left\{f_{1}, f_{2}, f_{3}\right\}$ on striction curve and the Frenet frame $\{T, N, B\}$ is as follows:

$$
\begin{aligned}
& f_{1}=N, \quad f_{2}=\frac{-\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B, \\
& f_{3}=\frac{\tau}{{\sqrt{\kappa^{2}+\tau^{2}}}^{2}+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B} \text {, }
\end{aligned}
$$

where $\kappa^{2}+\tau^{2} \neq 0$.
Proof. Considering the equation (2.6), we can easily calculate the striction curve of the normal ruled surface by fallowing:

$$
\beta(s)=\alpha(s)+\frac{\kappa}{\kappa^{2}+\tau^{2}} N .
$$

By the definition of X_{N}, we say $f_{1}=N$ and also, by using the equations (2.1) and (2.7), the vectors f_{2} and f_{3} are computed as

$$
f_{2}=\frac{-\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B \quad \text { and } \quad f_{3}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B .
$$

Definition 3.13. A surface Γ_{1} is called a f_{1} Sannia ruled surface in E^{3}, if the surface Γ_{1} is generated by moving the vector f_{1} along the striction curve β of X_{N}. The parametrical equation of f_{1} ruled surface is defined as

$$
\begin{equation*}
\Gamma_{1}(s, v)=\beta(s)+v f_{1}(s) \tag{3.1}
\end{equation*}
$$

where $\beta(s)=\alpha(s)+\frac{\kappa}{\kappa^{2}+\tau^{2}} N$ and $f_{1}=N$.
Taking the first order partial differentials of Γ_{1} with respect to s and v, we get

$$
\Gamma_{1_{s}}=\lambda_{1} T+\lambda_{2} N+\lambda_{3} B, \quad \Gamma_{1 v}=N
$$

such that

$$
\lambda_{1}=\frac{\tau^{2}}{\kappa^{2}+\tau^{2}}-v \kappa, \lambda_{2}=\left(\frac{\kappa}{\kappa^{2}+\tau^{2}}\right)^{\prime} \text { and } \quad \lambda_{3}=\tau\left(\frac{\kappa}{\kappa^{2}+\tau^{2}}+v\right)
$$

So, by considering (2.3) the normal vector field of Γ_{1} which is denoted by $u_{f_{1}}$ is found as

$$
u_{f_{1}}(s, v)=\frac{-\lambda_{3}}{\sqrt{\lambda_{3}^{2}+\lambda_{1}^{2}}} T+\frac{\lambda_{1}}{\sqrt{\lambda_{3}^{2}+\lambda_{1}^{2}}} B
$$

Theorem 3.14. Let Γ_{1} be a f_{1} Sannia ruled surface. Then the Gaussian curvature and the mean curvature of Γ_{1} are

$$
K_{f_{1}}=\frac{-\tau^{2}}{\lambda_{3}^{2}+\lambda_{1}^{2}} \text { and } H_{f_{1}}=\frac{\lambda_{1} \lambda^{\prime}{ }_{3}-\lambda_{2} \tau-\lambda^{\prime}{ }_{1} \lambda_{3}}{2\left(\lambda_{1}^{2}+\lambda_{3}^{2}\right)^{\frac{3}{2}}},
$$

respectively.
Proof. Taking the second order partial differential of Γ_{1} given by (3.1), we get

$$
\begin{aligned}
& \Gamma_{1 s s}=\left(\lambda^{\prime}{ }_{1}-\lambda_{2} \kappa\right) T+\left(\lambda^{\prime}{ }_{2}+\lambda_{1} \kappa-\lambda_{3} \tau\right) N+\left(\lambda^{\prime}{ }_{3}+\lambda_{2} \tau\right) B, \\
& \Gamma_{1 s v}=-\kappa T+\tau B, \quad \Gamma_{1 v v}=0
\end{aligned}
$$

By using these equations, the components of the first and the second fundamental form of Γ_{1} are found as

$$
\begin{aligned}
& E_{f_{1}}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}, \quad F_{f_{1}}=\lambda_{2}, \quad G_{f_{1}}=1, \\
& l_{f_{1}}=\frac{\lambda_{3}\left(-\lambda_{1}^{\prime}+\lambda_{2} \kappa\right)+\lambda_{1}\left(\lambda^{\prime}{ }_{3}+\lambda_{2} \tau\right)}{\sqrt{\lambda_{1}^{2}+\lambda_{3}^{2}}}, \quad m_{f_{1}}=\tau, \quad n_{f_{1}}=0 .
\end{aligned}
$$

From the equation (2.5), we reach the desired.
Corollary 3.15. Let X_{N} be a normal ruled surface in E^{3}. if the base curve α of
X_{N} is planar curve, then the f_{1} Sannia ruled surface is developable and minimal surface.
Definition 3.16. A surface Γ_{2} is called a f_{2} Sannia ruled surface in E^{3}, if the surface Γ_{2} is generated by moving the vector f_{2} along the striction curve β of X_{N}. The parametric equation of f_{2} Sannia ruled surface is defined as

$$
\begin{equation*}
\Gamma_{2}(s, v)=\beta(s)+v f_{2}(s) \tag{3.2}
\end{equation*}
$$

where $\beta(s)=\alpha(s)+\frac{\kappa}{\kappa^{2}+\tau^{2}} N$ and $f_{2}=\frac{-\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B$.
Taking the first order partial differentials of Γ_{2} with respect to s and v, we get

$$
\begin{aligned}
& \Gamma_{2 s}=\eta_{1} T+\eta_{2} N+\eta_{3} B \\
& \Gamma_{2 v}=-\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B
\end{aligned}
$$

such that

$$
\begin{aligned}
& \eta_{1}=\frac{\tau^{2}}{\kappa^{2}+\tau^{2}}-v\left(\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}}\right)^{\prime} \\
& \eta_{2}=\left(\frac{\kappa}{\kappa^{2}+\tau^{2}}\right)^{\prime}-v \sqrt{\kappa^{2}+\tau^{2}} \\
& \eta_{3}=\frac{\kappa \tau}{\kappa^{2}+\tau^{2}}+v\left(\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}\right)^{\prime}
\end{aligned}
$$

So, by considering (2.3) the normal vector field of Γ_{2} which is denoted by $u_{f_{2}}$ is found as

$$
u_{f_{2}}=\frac{\eta_{2} \tau T-\left(\eta_{1} \tau+\eta_{3} \kappa\right) N+\eta_{2} \kappa B}{\sqrt{\eta_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\eta_{1} \tau+\eta_{3} \kappa\right)^{2}}}
$$

Theorem 3.17. Let Γ_{2} be a f_{2} Sannia ruled surface in E^{3}, then the Gaussian curvature and the mean curvature of Γ_{2} are

$$
\begin{aligned}
K_{f_{2}}= & -\frac{\left(\kappa^{2}+\tau^{2}\right)\left(\left(\eta_{3} \kappa+\eta_{1} \tau\right) \eta^{\prime}{ }_{2}-\eta_{2}\left(\eta_{1}^{\prime} \tau+\eta_{3}^{\prime} \kappa\right)\right)^{2}}{\left(\left(\eta_{3} \kappa+\eta_{1} \tau\right)^{2}+\eta_{2}{ }^{2}\left(\kappa^{2}+\tau^{2}\right)\right)^{2}}, \\
H_{f_{2}}= & \frac{-2\left(\kappa^{2}+\tau^{2}\right)\left(\begin{array}{c}
\kappa \tau\left(\eta_{3}{ }^{2}-\eta_{1}{ }^{2}\right)+\eta_{2}\left(\tau \eta^{\prime}{ }_{1}+\kappa \eta^{\prime}{ }_{3}\right) \\
\left.-\eta_{1} \eta_{3}\left(\kappa^{2}-\tau^{2}\right)-\eta_{3} \tau\right) \sqrt{\kappa^{2}+\tau^{2}}\left(\begin{array}{c}
\left(\eta_{3} \kappa+\eta_{1} \tau\right)
\end{array}\right) \\
\left.-\eta_{1} \tau\right) \eta_{2}^{\prime}{ }_{2} \\
-\eta_{2}\left(\tau \eta^{\prime}{ }_{1}+\kappa \eta^{\prime}{ }_{3}\right)
\end{array}\right)}{2\left(\left(\eta_{1} \tau+\eta_{3} \kappa\right)^{2}+\eta_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)\right)^{\frac{3}{2}}}
\end{aligned}
$$

respectively.

Proof. Taking the second order partial differential of Γ_{2}, we have

$$
\begin{aligned}
& \Gamma_{2 s s}=\left(\eta^{\prime}{ }_{1}-\eta_{2} \kappa\right) T+\left(\eta^{\prime}{ }_{2}+\eta_{1} \kappa-\eta_{3} \tau\right) N+\left(\eta^{\prime}{ }_{3}+\eta_{2} \tau\right) B, \\
& \Gamma_{2 s v}=\eta_{1}^{\prime} T+\eta^{\prime}{ }_{2} N+\eta^{\prime}{ }_{3} B, \quad \Gamma_{2 v v}=0 .
\end{aligned}
$$

From here, the component of the first and the second fundamental forms of Γ_{2} are computed as

$$
\begin{aligned}
& E_{f_{2}}=\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}, \quad F_{f_{2}}=\frac{\eta_{3} \tau-\eta_{1} \kappa}{\sqrt{\kappa^{2}+\tau^{2}}}, \quad G_{f_{2}}=1, \\
& l_{f_{2}}=\frac{\binom{\eta_{2} \tau\left(\eta^{\prime}{ }_{1}-\eta_{2} \kappa\right)+\eta_{2} \kappa\left(\eta^{\prime}{ }_{3}+\eta_{2} \tau\right)}{-\left(\eta_{1} \tau+\eta_{3} \kappa\right)\left(\eta^{\prime}{ }_{2}+\eta_{1} \kappa-\eta_{3} \tau\right)}}{\sqrt{\eta_{2}{ }^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\eta_{1} \tau+\eta_{3} \kappa\right)^{2}}} \\
& m_{f_{2}}=\frac{\eta_{2}\left(\eta^{\prime}{ }_{3} \kappa+\eta^{\prime}{ }_{1} \tau\right)-\eta_{2}{ }_{2}\left(\eta_{3} \kappa+\eta_{1} \tau\right)}{\sqrt{\eta_{2}{ }^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\eta_{1} \tau+\eta_{3} \kappa\right)^{2}}} \\
& n_{f_{2}}=0 .
\end{aligned}
$$

So, substituting these equations into (2.5), the proof is complete.
Definition 3.18. A surface Γ_{3} is called a f_{3} Sannia ruled surface in E^{3}, if the surface Γ_{3} is generated by moving the vector f_{3} along the striction curve β of X_{N}. The parametric equation of f_{3} Sannia ruled surface is defined as

$$
\begin{equation*}
\Gamma_{3}(s, v)=\beta(s)+v f_{3}(s) \tag{3.3}
\end{equation*}
$$

where $\beta(s)=\alpha(s)+\frac{\kappa}{\kappa^{2}+\tau^{2}} N$ and $f_{3}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B$.
Taking the first order partial differentials of Γ_{3} with respect to s and v, we get

$$
\begin{aligned}
& \Gamma_{3 s}=\mu_{1} T+\mu_{2} N+\mu_{3} B, \\
& \Gamma_{3 v}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B
\end{aligned}
$$

such that

$$
\begin{aligned}
& \mu_{1}=\frac{\tau^{2}}{\kappa^{2}+\tau^{2}}+v\left(\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}\right)^{\prime} \\
& \mu_{2}=\left(\frac{\kappa}{\kappa^{2}+\tau^{2}}\right)^{\prime}, \mu_{3}=\frac{\kappa \tau}{\kappa^{2}+\tau^{2}}+v\left(\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}}\right)^{\prime}
\end{aligned}
$$

So, considering (2.3) the normal vector field of Γ_{3} which is denoted by $u_{f_{3}}$ is found as

$$
u_{f_{3}}=\frac{\mu_{2} \kappa T+\left(\mu_{3} \tau-\mu_{1} \kappa\right) N-\mu_{2} \tau B}{\sqrt{\mu_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\mu_{3} \tau-\mu_{1} \kappa\right)^{2}}}
$$

Theorem 3.19. Let Γ_{3} be a f_{3} Sannia ruled surface in E^{3}, then the Gaussian curvature and the mean curvature of Γ_{3} are

$$
\begin{aligned}
& K_{f_{3}}=- \frac{\left(\kappa^{2}+\tau^{2}\right)\left(-\mu_{1} \mu^{\prime}{ }_{2} \kappa+\mu_{3} \mu^{\prime}{ }_{2} \tau+\kappa \mu_{2} \mu^{\prime}{ }_{1}-\tau \mu_{2} \mu^{\prime}{ }_{3}\right)^{2}}{\left(\mu_{3} \tau-\mu_{1} \kappa\right)^{2}+\mu_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)} \\
& H_{f_{3}}= \frac{+2\left(\mu_{3} \kappa+\mu_{1} \tau\right) \sqrt{\kappa^{2}+\tau^{2}}\left(\mu_{1} \mu^{\prime}{ }_{2} \kappa-\mu_{3} \mu^{\prime}{ }_{2} \tau+\tau \mu_{2} \mu^{\prime}{ }_{3}-\mu^{\prime} \mu_{21} \kappa\right)}{} \\
&\left(\kappa^{2}+\tau^{2}\right)\binom{\left(\mu_{1} \kappa-\mu_{3} \tau\right)^{2}+\tau \mu_{2} \mu^{\prime}{ }_{3}-\mu_{1}{ }_{1} \mu_{2} \kappa}{+\mu_{2}{ }^{2} \kappa^{2}+\mu_{2}{ }^{2} \tau^{2}+\mu_{1} \mu^{\prime} \kappa-\mu_{3} \mu^{\prime} \tau} \\
&\left.2\left(\mu_{1} \kappa-\mu_{3} \tau\right)^{2}+\mu_{2}{ }^{2}\left(\kappa^{2}+\tau^{2}\right)\right)^{\frac{3}{2}}
\end{aligned}
$$

respectively.
Proof. Taking the second order partial differential of Γ_{3}, we have

$$
\begin{aligned}
& \Gamma_{3 s s}=\left(\mu_{1}^{\prime}-\mu_{2} \kappa\right) T+\left(\mu^{\prime}{ }_{2}+\mu_{1} \kappa-\mu_{3} \tau\right) N+\left(\mu^{\prime}{ }_{3}+\mu_{2} \tau\right) B, \\
& \Gamma_{3 s v}=\mu_{1}^{\prime} T+\mu^{\prime}{ }_{2} N+\mu^{\prime} B, \quad \Gamma_{3 v v}=0 .
\end{aligned}
$$

From here, the components of the first and the second fundamental forms of Γ_{3} are computed as

$$
\begin{aligned}
& E_{f_{3}}=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}, \quad F_{f_{3}}=\frac{\mu_{1} \tau+\mu_{3} \kappa}{\sqrt{\kappa^{2}+\tau^{2}}}, \quad G_{f_{3}}=1, \\
& l_{f_{3}}=\frac{\binom{\mu_{2} \kappa\left(\mu^{\prime}{ }_{1}-\mu_{2} \kappa\right)-\mu_{2} \tau\left(\mu_{3}^{\prime}+\mu_{2} \tau\right)}{+\left(\mu_{3} \tau-\mu_{1} \kappa\right)\left(\mu^{\prime}{ }_{2}+\mu_{1} \kappa-\mu_{3} \tau\right)}}{\sqrt{\mu_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\mu_{3} \tau-\mu_{1} \kappa\right)^{2}}} \\
& m_{f_{3}}=\frac{\left(-\mu_{1} \kappa+\mu_{3} \tau\right) \mu_{{ }_{2}}+\mu_{2}\left(\kappa \mu_{1}^{\prime}-\tau \mu^{\prime}{ }_{3}\right)}{\sqrt{\mu_{2}^{2}\left(\kappa^{2}+\tau^{2}\right)+\left(\mu_{3} \tau-\mu_{1} \kappa\right)^{2}}}, \quad n_{f_{3}}=0 .
\end{aligned}
$$

Substituting these into (2.5) completes the proof.
Example 3.20. Considering the curve α given by example 3.1, the striction curve and Sannia frame vectors of X_{N} are found as

$$
\begin{aligned}
\beta(s) & =\left(-\frac{1}{3} \cos (s)(-2+\cos (2 s)), \frac{2 \sin (s)^{3}}{3},-\frac{\cos (s)}{\sqrt{3}}\right), \\
f_{1} & =\left(-\frac{1}{2} \sqrt{3} \cos (2 s),-\frac{1}{2} \sqrt{3} \sin (2 s), \frac{1}{2}\right), \\
f_{2} & =(\sin (2 s),-\cos (2 s), 0), \\
f_{3} & =\left(\frac{1}{2} \cos (2 s), \cos (s) \sin (s), \frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

So, the ruled surfaces with Sannia frame are given by the following forms:

$$
\begin{aligned}
\Gamma_{1}(s, v)= & \left(-\frac{1}{3} \cos (s)(-2+\cos (2 s)), \frac{2 \sin (s)^{3}}{3},-\frac{\cos (s)}{\sqrt{3}}\right) \\
& +v\left(-\frac{1}{2} \sqrt{3} \cos (2 s),-\frac{1}{2} \sqrt{3} \sin (2 s), \frac{1}{2}\right) \\
\Gamma_{2}(s, v)= & \left(-\frac{1}{3} \cos (s)(-2+\cos (2 s)), \frac{2 \sin (s)^{3}}{3},-\frac{\cos (s)}{\sqrt{3}}\right) \\
& +v(\sin (2 s),-\cos (2 s), 0), \\
\Gamma_{3}(s, v)= & \left(-\frac{1}{3} \cos (s)(-2+\cos (2 s)), \frac{2 \sin (s)^{3}}{3},-\frac{\cos (s)}{\sqrt{3}}\right) \\
& +v\left(\frac{1}{2} \cos (2 s), \cos (s) \sin (s), \frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

(a) The normal ruled surface X_{N} (in purple), Γ_{1} Sannia ruled surface (in cyan), base curve α (in white), striction curve β (in yellow)

(b) The normal ruled surface X_{N} (in purple), Γ_{2} Sannia ruled surface (in red), base curve α (in white), striction curve β (in yellow)

(c) The normal ruled surface X_{N} (in purple), Γ_{3} Sannia ruled surface (in green), base curve α (in white), striction curve β (in yellow)

Figure 2: Sannia ruled surfaces associated with normal ruled surface with $s \in(-1,3)$ and $v \in(-1,1)$

3.3. Sannia ruled surfaces associated with binormal ruled surface

Theorem 3.21. Let X_{B} be a binormal ruled surface and $\left\{g_{1}, g_{2}, g_{3}\right\}$ be Sannia frame on the striction curve of X_{B}. Then, the relationship between the Sannia frame and the Frenet frame $\{T, N, B\}$ is as follows:

$$
\begin{equation*}
g_{1}=B, \quad g_{2}=-N, \quad g_{3}=T \tag{3.1}
\end{equation*}
$$

Proof. Let the curve δ be a striction curve of the binormal ruled surface X_{B}. By using (2.6), it can be easily shown that the striction curve δ is equal to the base curve of X_{B}, i.e., $\delta(s)=\alpha(s)$. From the definition of X_{B}, we say $g_{1}=B$ and by using the equations (2.1) and (2.7), the vectors we compute g_{2} and g_{2} as

$$
g_{2}=-N \text { and } g_{3}=T
$$

Definition 3.22. The surfaces Ψ_{1}, Ψ_{2} and Ψ_{3} are called g_{1}, g_{2} and g_{3} Sannia ruled surfaces in E^{3}, if the surfaces Ψ_{1}, Ψ_{2} and Ψ_{3} are generated by moving the vectors g_{1}, g_{2} and g_{3} along the striction curve δ of X_{B}, respectively. The parametrical equations of Ψ_{1}, Ψ_{2} and Ψ_{3} Sannia ruled surfaces are defined as

$$
\begin{aligned}
& \Psi_{1}(s, v)=\delta(s)+v g_{1}(s), \\
& \Psi_{2}(s, v)=\delta(s)+v g_{2}(s), \\
& \Psi_{3}(s, v)=\delta(s)+v g_{3}(s)
\end{aligned}
$$

where $g_{1}=B, g_{2}=-N$ and $g_{3}=T$.
Corollary 3.23. Let e_{1} and e_{3} be Sannia surfaces of the tangent ruled surface and g_{1} and g_{3} be Sannia ruled surfaces of the binormal ruled surface, then there are the following expressions:

1. The g_{1} and e_{3} Sannia ruled surfaces are the same surfaces.
2. The g_{3} and e_{1} Sannia ruled surfaces are the same surfaces.

Example 3.24. Let us consider the curve α given by example 3.1. As proved above, the striction curve δ and the base curve α of X_{B} are the same curve and $g_{1}=B, g_{2}=-N$ and $g_{3}=T$. In that case, The equations of ruled surfaces with Sannia frame $\left\{g_{1}, g_{2}, g_{3}\right\}$ of X_{B} are expressed as

$$
\begin{aligned}
\Psi_{1}(s, v)= & \frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& +v\left(\frac{3 \cos (s)-\cos (3 s)}{4}, \sin (s)^{3}, \frac{\sqrt{3} \cos (s)}{2}\right) \\
\Psi_{2}(s, v)= & \frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& -v\left(-\frac{\sqrt{3} \cos (2 s)}{2},-\frac{\sqrt{3} \sin (2 s)}{2}, \frac{1}{2}\right) \\
\Psi_{3}(s, v)= & \frac{3}{4}\left(\cos (s)+\frac{\cos (3 s)}{9}, \sin (s)+\frac{\sin (3 s)}{9}, \frac{-2 \cos (s)}{\sqrt{3}}\right) \\
& +\frac{3}{4} v\left(-\sin (s)-\frac{\sin (3 s)}{3}, \cos (s)+\frac{\cos (3 s)}{3}, \frac{2 \sin (s)}{\sqrt{3}}\right) .
\end{aligned}
$$

(a) The binormal ruled surface (Sannia ruled surface) $X_{B}=\Psi_{1}$ (in purple), striction curve δ (in yellow).

(b) The binormal ruled surface X_{B} (in purple), Ψ_{2} Sannia ruled surface (in red), striction curve δ (in yellow).

(c) The binormal ruled surface X_{B} (in purple), Ψ_{3} Sannia ruled surface (in green), striction curve δ (in yellow).

Figure 3: Sannia ruled surfaces associated with binormal ruled surface with $s \in(-1,3)$ and $v \in(-1,1)$.

3.4. Sannia ruled surfaces associated with Darboux ruled surface

Theorem 3.25. Let X_{C} be the Darboux ruled surface and $\left\{q_{1}, q_{2}, q_{3}\right\}$ be Sannia frame on the striction curve ϖ of $\quad X_{C}$ in E^{3}. Then the relation between the Sannia frame and the Frenet frame $\{T, N, B\}$ is given as

$$
\begin{aligned}
& q_{1}=\sin \varphi T+\cos \varphi B \\
& q_{2}=-\cos \varphi T+\sin \varphi B, \quad q_{3}=N
\end{aligned}
$$

where the angle φ is between the Darboux vector W and the binormal vector B. Proof. By considering the equation (2.6), the striction curve of X_{C} can be written as

$$
\varpi(s)=\alpha(s)-\frac{\left\langle\alpha^{\prime}, C^{\prime}\right\rangle}{\left\langle C^{\prime}, C^{\prime}\right\rangle} C=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C .
$$

By the definition of the surface $\quad X_{C}$, the Sannia frame vectors on the striction curve of $\quad X_{C}$ are computed as

$$
\begin{aligned}
& q_{1}=C=\sin \varphi T+\cos \varphi B \\
& q_{2}=\frac{C^{\prime}}{\left\|C^{\prime}\right\|}=-\cos \varphi T+\sin \varphi B \\
& q_{3}=q_{1} \times q_{2}=-N .
\end{aligned}
$$

Definition 3.26. A surface Δ_{1} is called q_{1} Sannia ruled surfaces in E^{3}, if the surface Δ_{1} is generated by moving the vector q_{1} along the striction curve ϖ of X_{C}. The parametric equation of q_{1} Sannia ruled surface is defined as

$$
\begin{equation*}
\Delta_{1}(s, v)=\varpi(s)+v q_{1}(s) \tag{3.1}
\end{equation*}
$$

where $\varpi(s)=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C$ and $q_{1}=\sin \varphi T+\cos \varphi B$.
Theorem 3.27. Let Δ_{1} be a q_{1} Sannia ruled surface, then the normal vector field of Δ_{1} and the principal normal vector of the curve α are linearly dependent.
Proof. When substituted the equations $\varpi(s)=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C$ and $q_{1}=\sin \varphi T+$ $\cos \varphi B$ into the parametric form of Δ_{1} given in (3.1), we get

$$
\Delta_{1}(s, v)=\alpha(s)+\frac{v \varphi^{\prime}-\cos \varphi}{\varphi^{\prime}} C .
$$

Taking the first order partial differential of this equation with respect to s and v, and by performing the necessary operation, we can write

$$
\Delta_{1 s} \times \Delta_{1 v}=-\varphi^{\prime} v N
$$

From here, the normal vector field denoted by $u_{q_{1}}$ of Δ_{1} is found as

$$
u_{q_{1}}= \pm N .
$$

Theorem 3.28. Let Δ_{1} be a q_{1} Sannia ruled surface, then the Gaussian curvature and the mean curvature of Δ_{1} are

$$
K q_{1}=0 \text { and } H q_{1}=\frac{-v \varphi^{\prime} \cdot\|W\|}{2}\left(2 \cos ^{2} \varphi+2 \sin \varphi\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}+\left(v \varphi^{\prime}\right)^{2}\right)^{-1}
$$

respectively.
Proof. Taking the second order partial differentials of Δ_{1} results

$$
\Delta_{1 s s}=\varpi^{\prime \prime}(s)+v q_{1}^{\prime \prime}, \quad \Delta_{1 s v}=q_{1}^{\prime} \text { and } \Delta_{1 v v}=0
$$

By using the equation (2.4), the components of the first and second fundamental forms of Δ_{1} are computed as

$$
\begin{aligned}
E_{q_{1}} & =1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\left(v \varphi^{\prime}\right)^{2}+\cos ^{2} \varphi, \quad F_{q_{1}}=\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}, \quad G_{q_{1}}=1 \\
l_{q_{1}} & =-v \varphi^{\prime}(\kappa-\cos \varphi\|W\|)-\left(v \varphi^{\prime}\right)^{2}\|W\|, \quad m_{q_{1}}=0, \quad n_{q_{1}}=0
\end{aligned}
$$

By substituting these equations into (2.5), the proof is complete.
Corollary 3.29. The q_{1} Sannia ruled surface is always a developable surface.
Definition 3.30. A surface Δ_{2} is called q_{2} Sannia ruled surfaces in E^{3}, if the surface Δ_{2} is generated by moving the vector q_{2} along the striction curve ϖ of X_{C}. The parametric equation of q_{2} Sannia ruled surface is defined as

$$
\begin{equation*}
\Delta_{2}(s, v)=\varpi(s)+v q_{2}(s) \tag{3.2}
\end{equation*}
$$

where $\varpi(s)=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C$ and $q_{2}=-\cos \varphi T+\sin \varphi B$.
By substituting the latter equations ϖ and q_{2} into (3.2), we get

$$
\Delta_{2}(s, v)=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C+v(-\cos \varphi T+\sin \varphi B)
$$

Taking the first order partial differentials of this equation with respect to s and v, we simply calculate

$$
\Delta_{2_{s}} \times \Delta_{2 v}=\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right) N-v\left(\varphi^{\prime} N+\|W\| C\right) .
$$

So, the normal vector field $u_{q_{2}}$ of Δ_{2} is computed as

$$
u_{q_{2}}=\frac{\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right) N-v\left(\varphi^{\prime} N+\|W\| C\right)}{\sqrt{\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+v^{2}\left(\left(\varphi^{\prime}\right)^{2}+\|W\|^{2}\right)}}
$$

Theorem 3.31. Let Δ_{2} be a q_{2} Sannia ruled surface, then the Gaussian curvature and the mean curvature of Δ_{2} are

$$
\begin{aligned}
& K q_{2}=\frac{-\|W\|^{2}\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}-v \varphi^{\prime}+v \varphi^{\prime \prime}\right)^{2}}{\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+v^{2}\left(\left(\varphi^{\prime}\right)^{2}+\|W\|^{2}\right)} \\
& H q_{2}=-\|W\|\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}-v \varphi^{\prime}+v \varphi^{\prime \prime}\right)
\end{aligned}
$$

respectively.
Proof. The second order partial differentials of Δ_{2} are given as

$$
\Delta_{2 s s}=\varpi^{\prime \prime}(s)+v q_{2}^{\prime \prime}, \quad \Delta_{2 s v}=q_{2}^{\prime}, \quad \Delta_{2 v v}=0
$$

By using (2.4), the components of the first and second fundamental forms of Δ_{2} are computed as

$$
\begin{aligned}
E_{q_{2}=}= & -\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}(\sin \varphi+\cos \varphi)+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\left(v \varphi^{\prime}\right)^{2} \\
& +\sin ^{2} \varphi+2 \varphi^{\prime}\left(-\sin \varphi+\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)+v^{2}\left(\left(\varphi^{\prime}\right)^{2}+\|W\|^{2}\right) \\
F_{q 2}= & 1, \quad G_{q 2}=0, \\
l_{q 2}= & \frac{v\|W\|\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime \prime}-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)-v \kappa \varphi^{\prime}+v \tau}{\sqrt{\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+v^{2}\left(\left(\varphi^{\prime}\right)^{2}+\|W\|^{2}\right)}} \\
m_{q_{2}}= & \frac{\|W\|\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}-v \varphi^{\prime}+v \varphi^{\prime \prime}\right)}{\sqrt{\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+v^{2}\left(\left(\varphi^{\prime}\right)^{2}+\|W\|^{2}\right)}} \\
n_{q 2}= & 0
\end{aligned}
$$

By substituting these equations into (2.5), the proof is complete.
Definition 3.32. A surface Δ_{3} is called q_{3} Sannia ruled surface in E^{3}, if the surface Δ_{3} is generated by moving the vector q_{3} along the striction curve ϖ of X_{C}. The parametric equation of q_{3} Sannia ruled surface is defined as

$$
\Delta_{3}(s, v)=\varpi(s)+v q_{3}
$$

where $\varpi(s)=\alpha(s)-\frac{\cos \varphi}{\varphi^{\prime}} C$ and $q_{3}=-N$.
We take derivate of this equation with respect to s and v, it is found that

$$
\Delta_{3 s}=\varpi^{\prime}(s)+v N^{\prime}, \quad \Delta_{3 v}=-N
$$

Therefore, the normal vector field of Δ_{3} can be written as

$$
u_{q 3}=\frac{\cos \varphi\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime} T+\left(1-\sin \varphi\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right) B-\left(\cos \varphi-\frac{v}{\|W\|}\right) C}{\sqrt{1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\cos ^{2} \varphi+\left(\frac{v}{\| W \pi}\right)^{2}}}
$$

Theorem 3.33. Let Δ_{3} be a q_{3} Sannia ruled surface, then the Gaussian curvature
and the mean curvature of Δ_{3} are

$$
\begin{aligned}
& K_{q_{3}}=0, \\
& H_{q_{3}}=\frac{\left(\begin{array}{l}
2 \varphi^{\prime}\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\left(\sin \varphi-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right) \\
+\frac{v}{\|W\|}\left(-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime \prime}+\varphi^{\prime} \cos \varphi\right) \\
+v\left(\kappa^{\prime} \sin \varphi+\tau^{\prime} \cos \varphi\right)\left(\frac{v}{\|W\|}-\cos \varphi\right) \\
-v\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\left(\kappa^{\prime} \cos \varphi+\tau^{\prime} \sin \varphi\right)+v \tau^{\prime}
\end{array}\right)}{\binom{2 \sqrt{1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\cos ^{2} \varphi+\left(\frac{v}{\|W\|}\right)^{2}}}{\sqrt{1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\cos ^{2} \varphi+v^{2}\|W\|^{2}}}}
\end{aligned}
$$

where $\varphi^{\prime} \neq 0$.
Proof. Taking the second order partial differential of Δ_{3}, it follows that

$$
\Delta_{3 s s}=\varpi^{\prime \prime}(s)-v N^{\prime \prime}, \quad \Delta_{3 s v}=\kappa T-\tau B, \quad \Delta_{3 v v}=0 .
$$

By using the equation (2.4), the components of the first and second fundamental forms of Δ_{3} are computed as

$$
\begin{aligned}
& E_{q 3}=1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\cos ^{2} \varphi+(v\|W\|)^{2}, F_{q 3}=0, \quad G_{q 3}=1, \\
& l_{q 3}=\frac{\left(\begin{array}{l}
2 \varphi^{\prime} \sin \varphi\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}-2 \varphi^{\prime}\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2} \\
+\frac{v}{\|W\|}\left(-\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime \prime}+\varphi^{\prime} \cos \varphi\right)+v \tau^{\prime} \\
+v\left(\kappa^{\prime} \sin \varphi+\tau^{\prime} \cos \varphi\right)\left(\frac{v}{\|W\|}-\cos \varphi\right) \\
-v\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\left(\kappa^{\prime} \cos \varphi+\tau^{\prime} \sin \varphi\right)
\end{array}\right)}{\sqrt{1+\left(\left(\frac{\cos \varphi}{\varphi^{\prime}}\right)^{\prime}\right)^{2}+\cos ^{2} \varphi+\left(\frac{v}{\| W \pi}\right)^{2}}}, \quad m_{q_{3}}=0, \quad n_{q 3}=0 .
\end{aligned}
$$

When substituted these into (2.5), the proof is complete.
Example 3.34. Considering the curve α given in example 3.1, the striction curve and the Sannia frame vectors of X_{C} are found as

$$
\begin{aligned}
\varpi(s) & =\left(\frac{2 \cos (s)-\cos (s) \cos (2 s)}{3}, \frac{2 \operatorname{Sin}(s)^{3}}{3},-\sqrt{3} \operatorname{Cos}(s)\right), \\
q_{1} & =\left(\frac{1}{2} \cos (2 s), \frac{1}{2} \sin (2 s), \frac{\sqrt{3}}{2}\right) \\
q_{2} & =(\sin (2 s),-\cos (2 s), 0) \\
q_{3} & =\left(\frac{\sqrt{3} \cos (2 s)}{2}, \frac{\sqrt{3} \sin (2 s)}{2},-\frac{1}{2}\right) .
\end{aligned}
$$

So, the q_{1}, q_{2} and q_{3} Sannia ruled surfaces are given by the following forms:

$$
\begin{aligned}
& \Delta_{1}(s, v)=\binom{\frac{3 \cos (s)+3 v \cos (2 s)-\cos (3 s)}{6},}{\frac{v 3 \sin (2 s)+4 \sin (s)^{3}}{6}, \frac{\sqrt{3}(v-2 \cos (s))}{2}}, \\
& \Delta_{2}(s, v)=\binom{\frac{2 \cos (s)-\cos (s) \cos (2 s)+3 v \sin (2 s)}{3},}{\frac{2 \sin (s)^{3}-3 v \cos (2 s)}{3},-\sqrt{3} \cos (s)}, \\
& \Delta_{3}(s, v)=\binom{\frac{3 \cos (s)+3 \sqrt{3} v \cos (2 s)-\cos (3 s)}{6},}{\frac{4 \sin (s)^{3}+3 \sqrt{3} v \sin (2 s)}{6},-\frac{v+2 \sqrt{3} \cos (s)}{2}} .
\end{aligned}
$$

(a) The Darboux ruled surface X_{C} (in purple), Δ_{1} Sannia ruled surface (in cyan), base curve α (in white), striction curve ϖ (in yellow).

(b) The graphs of Darboux ruled surface X_{C} (in pur$\mathrm{ple}), \Delta_{2}$ Sannia ruled surface (in red), base curve α (in white), striction curve ϖ (in yellow).

(c) The graphs of Darboux ruled surface X_{C} (in purple), Δ_{3} Sannia ruled surface (in green), base curve α (in white), striction curve ϖ (in yellow).

Figure 4: Sannia ruled surfaces associated with Darboux ruled surface with $s \in(-1,3)$ and $v \in(-1,1)$.

Acknowledgements. We would like to thank the anonymous reviewers for their suggestions which helped us to improve the quality of manuscript. We would also like to acknowledge the invaluable contributions provided by the editorial team of KMJ.

References

[1] D. J. Struik, Lectures on classical differential geometry, Addison-Wesley Publishing Company, Inc(1961).
[2] P. Do-Carmo, Differential geometry of curves and surfaces, IMPA(1976).
[3] A. Gray, Modern differential geometry of curves and surfaces with Mathematica, 2nd ed. CRC(1997).
[4] R. Garcia and J. Sotomayor, On the patterns of principal curvature lines around a curve of umbilical points, An. Acad. Brasil. Cinc., 77(1)(2004), 13-24.
[5] M. Juza, Ligne de striction sur unegeneralisation a plusierurs dimensions dune surface regle, Czechoslovak Math. J., 12(87)(1962), 243-250.
[6] H. H. Hacsaliholu, Differential geometry II, Ankara University Press(2000).
[7] A. Sarioglugil and A. Tutar, On ruled surfaces in Euclidean space, Int. J. Contemp. Math. Sci., 2(1)(2007), 1-11.
[8] S. Ouarab and A. O. Chahdi, Some characteristic properties of ruled surface with Frenet frame of an arbitrary non-cylindrical ruled surface in Euclidean 3-space, Int. J. Appl. Phys. Mathe., 10(1)(2020), 16-24.
[9] H. Pottmann and J. Wallner, Computational line geometry, Springer-Verlag, Berlin(2001).
[10] A. Kelleci and K. Eren, On evolution of some associated type ruled surfaces, Math. Sci. Appl. E-Notes, 8(2)(2020), 178-186.
[11] A. Pressley, Elementary differential geometry, Second Edition, Springer London $\operatorname{Ltd}(2010)$.
[12] W. Fenchel, On the differential geometry of closed space curves, Bull. Amer. Math. Soc., 57(1951), 44-54.

[^0]: * Corresponding Author.

 Received November 25, 2021; revised February 14, 2022; accepted February 22, 2022. 2020 Mathematics Subject Classification: 53A04, 53A05.
 Key words and phrases: Ruled surfaces, Sannia frame, striction curve, mean curvature, Gaussian curvature.

