• Title/Summary/Keyword: Maxwell material model

Search Result 52, Processing Time 0.022 seconds

Material model for load rate sensitivity

  • Kozar, Ivica;Ibrahimbegovic, Adnan;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.141-162
    • /
    • 2018
  • This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

Copper Phthalocyanine Field-effect Transistor Analysis using an Maxwell-wagner Model

  • Lee, Ho-Shik;Yang, Seung-Ho;Park, Yong-Pil;Lim, Eun-Ju;Iwamoto, Mitsumasa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.139-142
    • /
    • 2007
  • Organic field-effect transistor (FET) based on a copper Phthalocyanine (CuPc) material as an active layer and a $SiO_2$ as a gate insulator were fabricated and analyzed. We measured the typical FET characteristics of CuPc in air. The electrical characteristics of the CuPc FET device were analyzed by a Maxwell-Wagner model. The Maxwell-Wagner model employed in analyzing double-layer dielectric system was helpful to explain the C-V and I-V characteristics of the FET device. In order to further clarity the channel formation of the CuPc FET, optical second harmonic generation (SHG) measurement was also employed. Interestingly, SHG modulation was not observed for the CuPc FET. This result indicates that the accumulation of charge from bulk CuPc makes a significant contribution.

The Rheological and Mechanical Model for Relaxation Spectra of Polydisperse Polymers

  • Kim, Nam Jeong;Kim, Eung Ryul;Hahn Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.413-419
    • /
    • 1992
  • The theoretical equation for the relaxation spectrum of nonlinear viscoelastic polymeric material was derived from the Ree-Eyring and Maxwell non-Newtonian model. This model consists of infinite number of hyperbolic sine law Maxwell elements coupled in parallel plus a spring without a dashpot. Infinite number of nonlinear viscoelastic Maxwell elements can be used by specifying distribution of relaxation times, hole volumes, molecular weights, crystallite size and conformational size, etc. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The relaxation spectra of nylon 6 filament fibers in various electrolytic solutions were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The determination of relaxation spectra was performed from computer calculation.

Analysis of Excimer laser ablation via FDTD method (FDTD방법을 이용한 엑시머 레이저 어블레이션 해석)

  • Bae C.H.;Choi K.H.;Kim D.S.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.163-164
    • /
    • 2006
  • In this paper, an analytical laser ablation model with Maxwell equation will be addressed by considering relationship between laser ablation and material. The Maxwell equation consists of four equations: two Gauss laws for electric and magnetic fields, Faraday's law, and Ampere's law. This analytical model will be calculated by employing Finite Difference Time Domain (FDTD). This method also makes it possible to simulate the laser beam propagation in a wide range of materials, such as metals, semiconductors, and dielectrics. Therefore, in this study, a numerical model for short pulse laser interaction with materials is developed, focusing on the accurate description of laser beam propagation and ablation process into the material with each pulse.

  • PDF

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency (ME 소자의 저주파 등가회로 모델링)

  • Chung, Su-Tae;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Study of electric properties of pentacene field effect transistor using C- V and SHG measurements (C-V, SHG를 이용한 pentacene FFT의 전기적 특성 연구)

  • Lim, Eun-Ju;Takaaki, Manaka;Tamura, Ryosuke;Iwamoto, Mitsumasa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.70-71
    • /
    • 2007
  • Analyzing pentacene field effect transistors (FETs) with Au source and drain electrodes as Maxwell-Wagner effect elements, electron and hole injection from the Au electrodes into the FET channel were examined using current-voltage (I-V), capacitance-voltage (C-V) and optical second harmonic generation (SHG) measurements. Based on these results, a mechanism of the hole and electron injection into pentacene from the Au electrodes and subsequently recombination mechanism with light-emitting in the pentacene layer are discussed, with taking into account the presence of trapped charges.

  • PDF