DOI QR코드

DOI QR Code

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency

ME 소자의 저주파 등가회로 모델링

  • Chung, Su-Tae (Department of Electronic Engineering, Pukyong National University) ;
  • Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National University)
  • Received : 2013.06.20
  • Accepted : 2013.06.24
  • Published : 2013.07.01

Abstract

Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Keywords

References

  1. R. Grossinger, Giap V. Duong, and R. Sato-Turtelli, J. Magn. Magn. Mater., 320, 1972 (2008). https://doi.org/10.1016/j.jmmm.2008.02.031
  2. S. N. Babu, K. Srinivas, S. V. Suryanarayana, and T. Bhimasankaram, J. Phys. D: Appl. Phys., 41, 165407 (2008). https://doi.org/10.1088/0022-3727/41/16/165407
  3. C. M. Kanamadi, S. R. Kulkarni, B. K. Chougule, J. H. Jeong, B. C. Choi, and Y. S. Kang, J. Mater Sci; Mater Electron, 20, 632 (2009). https://doi.org/10.1007/s10854-008-9777-z
  4. R. Sun, B. Fang, X. Dong, and J. Liu, J. Mater Sci., 44, 5515 (2009). https://doi.org/10.1007/s10853-009-3771-6
  5. J. H. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram., 8, 107 (2002). https://doi.org/10.1023/A:1020599728432
  6. V. M. Petrov, M. I. Bichurin, G. Srinivasan, J. Zhai, and D. Viehland, Solid State Communication, 142, 515 (2007). https://doi.org/10.1016/j.ssc.2007.03.043
  7. V. M. Laletin, V. M. Petrov, D. S. Tuskov, and G. Srinivasan, Tech. Phys. Lett., 34, 83 (2008). https://doi.org/10.1134/S1063785008010252
  8. Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, IEEE Sensor Journal., 6, 935 (2006). https://doi.org/10.1109/JSEN.2006.877989
  9. A. V. Hippel, Dielectric and Waves (Artech House Boston-London, 1995) p. 228.
  10. Y. K. Park, S. M. Son, J. G. Ryu, and S. T. Chung, J. KIEEME, 23, 869 (2010).
  11. G. V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Basques, J. Magn. Magn. Mater., 316, 390 (2004).
  12. N. Singh, A. Agarwal, and S. Sanghi, Curr. Appl. Phys., 11, 783 (2011). https://doi.org/10.1016/j.cap.2010.11.073
  13. D. Ravinder and K. Latha, Mater. Lett., 41, 247 (1999). https://doi.org/10.1016/S0167-577X(99)00138-X
  14. M. V. Ramanaa, N. R. Reddt, G. Sreenivasulu, K. V. S. Kumar, B. S. Murty, and V.R.K. Murthy, Curr. Appl. Phys., 9, 1134 (2009). https://doi.org/10.1016/j.cap.2009.01.002
  15. Y. J. Li, Solid State Communication, 137, 120 (2006). https://doi.org/10.1016/j.ssc.2005.11.017
  16. G. Catalan, Appl. Phys. Lett., 88, 102902 (2006). https://doi.org/10.1063/1.2177543
  17. J. Zhou, Z. Qiu, and P. Liu, Mater. Res. Bull., 43, 3514 (2008). https://doi.org/10.1016/j.materresbull.2008.01.019
  18. A. J. Moulson and J. M. Herbert, Electroceramics, Materials-Properties-Applications (Chapman and Hall, London-Newyork, 1990) p. 400.
  19. A. Chelkowski, Dielectric Physics (Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1980) p. 97.