• 제목/요약/키워드: Maximization

검색결과 1,103건 처리시간 0.023초

불완전 자료에 대한 Metropolis-Hastings Expectation Maximization 알고리즘 연구 (Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data)

  • 전수영;이희찬
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.183-196
    • /
    • 2012
  • 결측자료(missing data), 절단분포(truncated distribution), 중도절단자료(censored data) 등 불완전한 자료(incomplete data)하의 추론문제(incomplete problems)는 통계학에서 자주 발생되는 현상이다. 이런 문제의 해결방법으로 Expectation Maximization, Monte Carlo Expectation Maximization, Stochastic Expectation Maximization 알고리즘 등을 이용하는 방법이 있지만, 정형화된 분포의 가정이 필요하다는 단점을 가지고 있다. 본 연구에서는 정형화된 분포의 가정이 없는 경우에 사용할 수 있는 Metropolis-Hastings Expectation Maximization(MHEM) 알고리즘을 제안하고자 한다. MHEM 알고리즘의 효율성은 중도절단자료(censored data)를 이용한 모의실험과 KOSPI 200 수익률의 실증자료분석를 통해 알수 있었다.

'Chamfer Matching'과 'Mutual Information Maximization' 알고리즘을 이용한 해부학적 영상과 핵의학 기능영상의 정합 연구 (A study of registration algorithm based on 'Chamfer Matching' and 'Mutual Information Maximization' for anatomical image and nuclear medicine functional image)

  • 양희종;주라형;송주영;서태석
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.104-107
    • /
    • 2004
  • 본 연구에서는 다중영상 획득용 두뇌팬텀을 사용하여 CT, MR, 그리고 PET영상을 획득하였으며, 이를 정합대상으로 하여 해부학적 영상과 핵의학 기능영상과의 정합을 실시하였다. 정합 알고리즘으로는 현재 널리 사용되고 있는 'Chamfer Matching' 알고리즘과 Mutual Information Maximization' 알고리즘을 이용하였고, 기존 연구에서 타당성이 검증된 정합 프로그램을 사용하였다. 정합 결과, CT-MR, CT-PET, MR-PET세 가지 정합경우에 대하여 두 알고리즘 모두 효과적인 방법임을 알 수 있었으나, 저해상도의 핵의학 영상인 PET과의 정합에선 Mutual Information Maximization'알고리즘이 더 효과적인 방법임을 확인하였다.

  • PDF

선반가공공정에서 RSM을 이용한 가공공정의 포괄적 최적화 (Global Optimization of the Turning Operation Using Response Surface Method)

  • 이현욱;권원태
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.114-120
    • /
    • 2010
  • Optimization of the turning process has been concentrated on the selection of the optimal cutting parameters, such as cutting speed, feed rate and depth of cut. However, optimization of the cutting parameters does not necessarily guarantee the maximum profit. For the maximization of the profit, parameters other than cutting parameters have to be taken care of. In this study, 8 price-related parameters were considered to maximize the profit of the product. Regression equations obtained from RSM technique to relate the cutting parameters and maximum cutting volume with a given insert were used. The experiments with four combinations of cutting inserts and material were executed to compare the results that made the profit and cutting volume maximized. The results showed that the cutting parameters for volume and profit maximization were totally different. Contrary to our intuition, global optimization was achieved when the number of inserts change was larger than those for volume maximization. It is attributed to the faster cutting velocity, which decreases processing time and increasing the number of tool used and the total tool changing time.

멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘 (Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage)

  • 김진영;이재진
    • 한국통신학회논문지
    • /
    • 제37A권10호
    • /
    • pp.809-814
    • /
    • 2012
  • 본 논문은 멀티레벨을 가지는 홀로그래픽 저장 장치에서 EM (Expectation-maximization) 알고리즘을 이용한 적응 문턱전압검출기를 제안한다. 멀티레벨을 이용한 홀로그래픽 저장 장치의 경우 DC 오프셋의 정도에 따라 비적응 문턱전압검출기의 성능에 매우 심각한 영향을 미친다. EM 방법은 채널을 통과한 데이터를 이용해 Expectation step과 maximization step을 반복하면서 평균과 분산을 추정하는 방법이다. DC 오프셋이 있는 상황에서 제안된 방법을 적용하여 문턱값을 찾아내서 검출한 결과 일정한 한도 내의 DC 오프셋의 경우는 DC 오프셋이 없는 경우와 동일한 성능을 보였다.

소셜 네트워크 내 경쟁 집단에의 영향력 최대화 기법 (Influence Maximization against Social Adversaries)

  • 정시현;노기섭;오하영;김종권
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2015
  • 최근 온라인 소셜 네트워크의 성장에 따라, 영향력 최대화 기법을 활용한 다양한 마케팅 기법들이 소개되고 있다. 하지만 지금까지 네트워크 구성이 감춰진 경쟁 집단들이 존재하는 환경에서 영향력 최대화 문제를 해결하려고 시도한 기법은 제안된 적이 없었다. 본 논문에서는 아군 집단과 경쟁 집단 들이 존재하는 소셜 네트워크 환경에서 경쟁 집단에 영향력을 가장 최대화하는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 소셜 네트워크의 속성들 중 중간 중심성, 클러스터링 계수, 지역적 연결도로와 연결, 그리고 3인조 폐쇄특징 등을 효과적으로 활용한다. 실험을 통하여 본 논문에서 제안하는 알고리즘이 기존 알고리즘보다 경쟁 집단에의 영향력을 더 확산할 수 있음을 확인하였고, 결론적으로 2배의 성능 향상을 보여 주었다.

Product Adoption Maximization Leveraging Social Influence and User Interest Mining

  • Ji, Ping;Huang, Hui;Liu, Xueliang;Hu, Xueyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2069-2085
    • /
    • 2021
  • A Social Networking Service (SNS) platform provides digital footprints to discover users' interests and track the social diffusion of product adoptions. How to identify a small set of seed users in a SNS who is potential to adopt a new promoting product with high probability, is a key question in social networks. Existing works approached this as a social influence maximization problem. However, these approaches relied heavily on text information for topic modeling and neglected the impact of seed users' relation in the model. To this end, in this paper, we first develop a general product adoption function integrating both users' interest and social influence, where the user interest model relies on historical user behavior and the seed users' evaluations without any text information. Accordingly, we formulate a product adoption maximization problem and prove NP-hardness of this problem. We then design an efficient algorithm to solve this problem. We further devise a method to automatically learn the parameter in the proposed adoption function from users' past behaviors. Finally, experimental results show the soundness of our proposed adoption decision function and the effectiveness of the proposed seed selection method for product adoption maximization.

Competitive Influence Maximization on Online Social Networks under Cost Constraint

  • Chen, Bo-Lun;Sheng, Yi-Yun;Ji, Min;Liu, Ji-Wei;Yu, Yong-Tao;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1263-1274
    • /
    • 2021
  • In online competitive social networks, each user can be influenced by different competing influencers and consequently chooses different products. But their interest may change over time and may have swings between different products. The existing influence spreading models seldom take into account the time-related shifts. This paper proposes a minimum cost influence maximization algorithm based on the competitive transition probability. In the model, we set a one-dimensional vector for each node to record the probability that the node chooses each different competing influencer. In the process of propagation, the influence maximization on Competitive Linear Threshold (IMCLT) spreading model is proposed. This model does not determine by which competing influencer the node is activated, but sets different weights for all competing influencers. In the process of spreading, we select the seed nodes according to the cost function of each node, and evaluate the final influence based on the competitive transition probability. Experiments on different datasets show that the proposed minimum cost competitive influence maximization algorithm based on IMCLT spreading model has excellent performance compared with other methods, and the computational performance of the method is also reasonable.

개인별 선택행위에서의 동력모형의 유효성 (Validity of Gravity Models for Individual Choies)

  • 음성직
    • 대한교통학회지
    • /
    • 제1권1호
    • /
    • pp.43-47
    • /
    • 1983
  • Within the conventional transportation planning process, "trip distribution" has a significant role to play. The most widely applied trip distribution model is the gravity model, for which Wilson provided the theoretical basis in 1967. The concept of the gravity model, however, still remains ambiguous if we analyze the "trip distribution" with a disaggregate data set. Thus, this paper hypothesizes that the gravity technique is still valid even with the disaggregate data set, by proving that the estimated coefficients of the gravity model, which is derived under the principle of entropy maximization, are identical with those of the multinomial logit model, which is derived under the principle of individual utility maximization.tility maximization.

  • PDF

Yield 최대화를 고려한 회로설계 (A Circuit design with Yield Maximization)

  • 김희석;임재석
    • 대한전자공학회논문지
    • /
    • 제22권5호
    • /
    • pp.102-109
    • /
    • 1985
  • 다차원 Monte Carlo방법을 연구하여 새로운 yield 최대화 절차를 연구하였다. 새로 변형된 weight 선택 알고리즘을 MOS FET NAND 게이트에 적용하여 최대 yield추정을 하였다. 또한 본논문의 yield 최대화 절차는 목적함수가 non-convex일때도 적용된다.

  • PDF

최소자승법을 이용한 Switched Reluctance Motor의 최대 평균토오크 제어 (Maximization average torque control of Switched Reluctance Motor using least square method)

  • 김춘삼;정연석
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.61-65
    • /
    • 2002
  • SRM 토크는 인덕턴스 프로파일과 전류에 의해 발생한다. 발생한 SRM 토크는 전류제어시 turn-off 각을 제어함으로써 최대화 할 수 있고, 본 논문에서는 최소자승법을 이용하여 구한 함수를 통해 Turn-off 각을 제어할 수 있는 방안을 제안하였다. 시뮬레이션은 3상 6/4극 SRM을 대상으로 하였고, 제안한 방법에 의해 최대 평균토크가 됨을 시뮬레이션을 통해 증명하였다.