• Title/Summary/Keyword: Maximal

Search Result 3,834, Processing Time 0.025 seconds

ON WEIGHTED COMPACTNESS OF COMMUTATORS OF BILINEAR FRACTIONAL MAXIMAL OPERATOR

  • He, Qianjun;Zhang, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.495-517
    • /
    • 2022
  • Let Mα be a bilinear fractional maximal operator and BMα be a fractional maximal operator associated with the bilinear Hilbert transform. In this paper, the compactness on weighted Lebesgue spaces are considered for commutators of bilinear fractional maximal operators; these commutators include the fractional maximal linear commutators Mjα,β and BMjα,β (j = 1, 2), the fractional maximal iterated commutator ${\mathcal{M}}_{{\alpha},{\vec{b}}}$, and $BM_{{\alpha},{\vec{b}}}$, where b ∈ BMO(ℝd) and ${\vec{b}}\;=\;(b_1,b_2)\;{\in}\;BMO({\mathbb{R}}^d)\;{\times}\;BMO({\mathbb{R}}^d)$. In particular, we improve the well-known results to a larger scale for 1/2 < q < ∞ and give positive answers to the questions in [2].

MAXIMALITY PRESERVING CONSTRUCTIONS OF MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA

  • Song, Young-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.295-306
    • /
    • 2012
  • Let (R, $m_R$, k) be a local maximal commutative subalgebra of $M_n$(k) with nilpotent maximal ideal $m_R$. In this paper, we will construct a maximal commutative subalgebra $R^{ST}$ which is isomorphic to R and study some interesting properties related to $R^{ST}$. Moreover, we will introduce a method to construct an algebra in $MC_n$(k) with i($m_R$) = n and dim(R) = n.

INTEGRAL CURVES OF THE CHARACTERISTIC VECTOR FIELD ON CR-SUBMANIFOLDS OF MAXIMAL CR-DIMENSION

  • Kim, Hyang Sook;Pak, Jin Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.107-118
    • /
    • 2017
  • In this paper we study CR-submanifolds of maximal CR-dimension by investigating extrinsic behaviors of integral curves of characteristic vector field on them. Also we consider the notion of ruled CR-submanifold of maximal CR-dimension which is a generalization of that of ruled real hypersurface and find some characterizations of ruled CR-submanifold of maximal CR-dimension concerning extrinsic shapes of integral curves of the characteristic vector field and those of CR-Frenet curves.

LOCALLY NILPOTENT GROUPS WITH THE MAXIMAL CONDITION ON INFINITE NORMAL SUBGROUPS

  • Paek, Dae-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.465-472
    • /
    • 2004
  • A group G is said to satisfy the maximal condition on infinite normal subgroups if there does not exist an infinite properly ascending chain of infinite normal subgroups. We characterize the structure of locally nilpotent groups satisfying this chain condition. We then show how to construct locally nilpotent groups with the maximal condition on infinite normal subgroups, but not the maximal condition on subgroups.

MAXIMAL MONOTONE OPERATORS IN THE ONE DIMENSIONAL CASE

  • Kum, Sang-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.371-381
    • /
    • 1997
  • Our basic concern in this paper is to investigate some geometric properties of the graph of a maximal monotone operator in the one dimensional case. Using a well-known theorem of Minty, we answer S. Simon's questions affirmatively in the one dimensional case. Further developments of these results are also treated. In addition, we provide a new proof of Rockafellar's characterization of maximal monotone operators on R: every maximal monotne operator from R to $2^R$ is the subdifferential of a proper convex lower semicontinuous function.

  • PDF

ON THE CONTINUITY OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION

  • Park, Young Ja
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.43-46
    • /
    • 2018
  • It is concerned with the continuity of the Hardy-Little wood maximal function between the classical Lebesgue spaces or the Orlicz spaces. A new approach to the continuity of the Hardy-Littlewood maximal function is presented through the observation that the continuity is closely related to the existence of solutions for a certain type of first order ordinary differential equations. It is applied to verify the continuity of the Hardy-Littlewood maximal function from $L^p({\mathbb{R}}^n)$ to $L^q({\mathbb{R}}^n)$ for 1 ${\leq}$ q < p < ${\infty}$.

A NOTE ON MAXIMAL HYPERSURFACES IN A GENERALIZED ROBERTSON-WALKER SPACETIME

  • de Lima, Henrique Fernandes
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.893-904
    • /
    • 2022
  • In this note, we apply a maximum principle related to volume growth of a complete noncompact Riemannian manifold, which was recently obtained by Alías, Caminha and do Nascimento in [4], to establish new uniqueness and nonexistence results concerning maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker (GRW) spacetime obeying the timelike convergence condition. A study of entire solutions for the maximal hypersurface equation in GRW spacetimes is also made and, in particular, a new Calabi-Bernstein type result is presented.

DECOMPOSITIONS OF GRADED MAXIMAL SUBMODULES

  • Moh'd, Fida
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • In this paper, we present different decompositions of graded maximal submodules of a graded module. From these decompositions, we derive decompositions of the graded Jacobson radical of a graded module. Using these decompositions, we prove new theorems about graded maximal submodules, improve old theorems, and give other proofs for old theorems.

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.67-74
    • /
    • 2024
  • Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.