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Abstract. In this note, we apply a maximum principle related to volu-

me growth of a complete noncompact Riemannian manifold, which was
recently obtained by Aĺıas, Caminha and do Nascimento in [4], to esta-

blish new uniqueness and nonexistence results concerning maximal space-

like hypersurfaces immersed in a generalized Robertson-Walker (GRW)
spacetime obeying the timelike convergence condition. A study of en-

tire solutions for the maximal hypersurface equation in GRW spacetimes
is also made and, in particular, a new Calabi-Bernstein type result is

presented.

1. Introduction

Let (Mn, 〈 , 〉Mn) be a connected, n-dimensional (n ≥ 2) oriented Riemann-
ian manifold, I a 1-dimensional manifold (either a circle or an open interval of
R), and f : I → R a positive smooth function. In the product differentiable

manifold M
n+1

= I × Mn, let πI and πM denote the projections onto the
factors I and Mn, respectively. A particular class of Lorentzian manifolds is

the one obtained by furnishing M
n+1

with the metric

(1) 〈v, w〉p = −〈(πI)∗v, (πI)∗w〉I + (f ◦ πI) (p)2〈(πM )∗v, (πM )∗w〉Mn

for all p ∈Mn+1
and all v, w ∈ TpM . Following the terminology introduced by

Aĺıas, Romero and Sánchez in [7], such a space is called a generalized Robertson-
Walker (GRW) spacetime, f is known as the warping function and we shall

write M
n+1

= −I ×f Mn to denote it. In particular, when the Riemannian
fiber Mn has constant sectional curvature, then −I×fMn is classically called a
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Robertson-Walker (RW) spacetime, and it is a spatially homogeneous spacetime
(for more details, see [16]).

As it was observed in [6], spatial homogeneity, which is reasonable as a first
approximation of the large scale structure of the universe, may not be realistic
when one considers a more accurate scale. For this reason, GRW spacetimes
could be suitable spacetimes to model universes with inhomogeneous space-
like geometry. Besides, small deformations of the metric on the fiber of RW
spacetimes fit into the class of GRW spacetimes (see, for instance, [12,18]).

In this paper, we are interested in the study of maximal hypersurfaces (that
is, spacelike hypersurfaces with vanishing mean curvature) immersed in a GRW
spacetime. Many authors have approached problems in this subject. We may
cite, for instance, the works [2, 9–11, 17, 19–21], where the authors have ob-
tained several uniqueness and nonexistence results for maximal hypersurfaces
under the assumption that the ambient spacetime obeys either the timelike
convergence condition or the null convergence condition. Let us recall that a
spacetime obeys the timelike (null) convergence condition if its Ricci curvature
is nonnegative on timelike (null or lightlike) directions.

Here, we deal with complete noncompact maximal hypersurfaces immersed
in a GRW spacetime obeying the timelike convergence condition. Consider-
ing this setting, in Section 3 we apply a maximum principle related to volume
growth of a complete noncompact Riemannian manifold, which was recently ob-
tained by Aĺıas, Caminha and do Nascimento in [4], to establish new uniqueness
and nonexistence results concerning these spacelike hypersurfaces. Afterwards,
in Section 4 we study entire solutions for the maximal hypersurface equation
in such GRW spacetimes and, in particular, we obtain a new Calabi-Bernstein
type result. Some preliminary facts related to spacelike hypersurfaces in a
GRW spacetime, as well as the notion of the timelike convergence condition,
are recalled in Section 2.

2. Preliminaries

In this section, we recall some basic facts concerning spacelike hypersurfaces
immersed in a GRW spacetime, as well as we refresh the notion of the timelike
convergence condition.

2.1. Spacelike hypersurfaces in a GRW spacetime

A smooth immersion ψ : Σn → −I ×f Mn of an n-dimensional connected
manifold Σn is said to be a spacelike hypersurface if the induced metric via ψ
is a Riemannian metric on Σn, which, as usual, is also denoted by 〈 , 〉. In this
case, since

∂t = (∂/∂t)(t,x) , (t, x) ∈ −I ×f Mn

is a unitary timelike vector field globally defined on the ambient spacetime,
there exists a unique timelike unitary normal vector field N globally defined
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on the spacelike hypersurface Σn which is in the same time-orientation of ∂t.
From the inverse Cauchy-Schwarz inequality, we get

(2) 〈N, ∂t〉 ≤ −1 < 0 on Σn.

In what follows, we will refer to that normal vector field N as the future-pointing
Gauss map of the spacelike hypersurface Σn.

For each t0 ∈ I, we orient the (spacelike) slice Mn
t0 = {t0}×Mn by using its

unit normal vector field ∂t. According to [7], Mt0 has constant mean curvature

H = f ′

f (t0) with respect to ∂t.

Now, we consider two particular functions naturally attached to a spacelike

hypersurface Σn immersed into a GRW spacetime M
n+1

= −I×fMn, namely,
the (vertical) height function h = (πI)|Σ and the support function 〈N, ∂t〉, where
N stands for the future-pointing Gauss map of Σn.

Denoting by ∇ and ∇ the Levi-Civita connections in −I ×f Mn and Σn,
respectively, a simple computation shows that

∇πI = −〈∇πI , ∂t〉∂t = −∂t.

Consequently, we obtain

(3) ∇h = (∇πI)> = −∂>t = −∂t − 〈N, ∂t〉N.

Hence, from (3) we get the following relation

(4) |∇h|2 = 〈N, ∂t〉2 − 1,

where | · | stands for the norm of a vector field on Σn.
We define the hyperbolic angle θ of Σn as being the smooth function θ :

Σn → [0,+∞) given by

(5) cosh θ = −〈N, ∂t〉 ≥ 1.

Therefore, from (4) and (5) we obtain

(6) sinh2 θ = |∇h|2.

2.2. The timelike convergence condition (TCC)

A GRW spacetime M
n+1

= −I×fMn obeys the null convergence condition

(NCC) when its Ricci tensor Ric is such that Ric(Z,Z) ≥ 0 for all null vector
field Z ∈ X(M). From Corollary 7.43 of [16] we have that

Ric(Z,W ) = RicM (Z∗,W ∗) + (n((log f)′)2 + (log f)′′)〈Z,W 〉
− (n− 1)(log f)′′〈Z, ∂t〉〈W,∂t〉,(7)

where RicM denotes the Ricci tensor of the Riemannian fiber Mn and Z∗ = Z+
〈Z, ∂t〉∂t stands for the projection of the vector field Z onto Mn. Consequently,

from (7) we have that the NCC holds in M
n+1

if and only if

(8) RicM ≥ (n− 1)
(
f2(log f)′′

)
〈 , 〉Mn .
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A more restrictive energy condition is the timelike converge condition (TCC),
that is,

Ric(Z,Z) ≥ 0

for all timelike vector field Z ∈ X(M). We note that, by a continuity argument,
it turns out that the TCC implies NCC. Moreover, it is not difficult to check

that M
n+1

satisfies the TCC if and only if (8) holds and f ′′ ≤ 0 (for more
details concerning the NCC and the TCC, see [15]).

3. Main results

We start this section, quoting the analytical tool that will be used to prove
our results. For this, let Σn be a connected, oriented, complete noncompact
Riemannian manifold. We denote by B(p, r) the geodesic ball centered at p
and with radius r. Given a polynomial function σ : (0,+∞) → (0,+∞), we
say that Σn has polynomial volume growth like σ if there exists p ∈ Σn such
that

vol(B(p, r)) = O(σ(r)),

as r → +∞, where vol denotes the canonical Riemannian volume of Σn. As
it was already observed in the beginning of Section 2 in [4], if p, q ∈ Σn are at
distance d from each other, we can verify that

vol(B(p, r))

σ(r)
≥ vol(B(q, r − d))

σ(r − d)
.
σ(r − d)

σ(r)
.

Consequently, the choice of p in the notion of volume growth is immaterial,
and we will just say that Σn has polynomial volume growth.

Keeping in mind the previous digression, we have the following lemma which
corresponds to a particular case of a maximum principle recently obtained by
Aĺıas, Caminha and do Nascimento (see Theorem 2.1 of [4]).

Lemma 3.1. Let Σn be a connected, oriented, complete noncompact Riemann-
ian manifold, and let ξ ∈ C∞(Σ) be a nonnegative smooth function such that
∆ξ ≥ aξ on Σn for some positive constant a ∈ R. If Σn has polynomial volume
growth and |∇ξ| is bounded on Σn, then ξ vanishes identically on Σn.

In Subsections 3.1 and 3.2 we will apply Lemma 3.1 to establish improve-
ments of the results obtained in [10], in the sense that we will replace technical
hypotheses like the integrability of |∇h|, the stochastic completeness of Σn and
the strong timelike convergence condition (STCC), which appear in Theorems
3.2, 3.7 and 3.9 of [10], by the geometric property that Σn has polynomial
volume growth.

3.1. Uniqueness of maximal hypersurfaces

In order to establish our results, we recall that a slab

[t1, t2]×Mn = {(t, q) ∈ −I ×f Mn : t1 ≤ t ≤ t2}
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is called a timelike bounded region of the GRW spacetime −I ×f Mn. Now, we
are in position to present the following uniqueness result.

Theorem 3.2. Let M
n+1

= −I×fMn be a GRW spacetime obeying the TCC
and whose Riemannian fiber Mn is complete noncompact. The only complete
noncompact maximal hypersurfaces Σn with polynomial volume growth, lying

in a timelike bounded region of M
n+1

, whose hyperbolic angle and second fun-
damental form are bounded and such that f ′′(h) < 0, are the totally geodesic

slices of M
n+1

.

Proof. Since Σn is a maximal hypersurface, from Proposition 3.1 of [14] we
have

1

2
∆ sinh2 θ ≥ n

f ′(h)2

f(h)2
+ 〈A2(∇h),∇h〉 − 2

f ′(h)

f(h)
Hess(h)(∇h,∇h)

+ cosh2 θRicM (N∗, N∗) + 2
f ′(h)

f(h)
cosh θ〈A(∇h),∇h〉

+ (2n+ 1)
f ′(h)2

f(h)2
sinh2 θ − nf

′′(h)

f(h)
sinh2 θ(9)

+ (n+ 1)
f ′(h)2

f(h)2
sinh4 θ − nf

′′(h)

f(h)
sinh4 θ,

where A : X(Σ) → X(Σ) stands for the second fundamental form of Σn with
respect to its future-pointing Gauss map N .

On the other hand, since N = N∗ + cosh θ∂t, from (1) we have that

(10) sinh2 θ = f(h)2〈N∗, N∗〉Mn .

Thus, using inequality (8) and equation (10) into (9), we obtain

1

2
∆ sinh2 θ ≥ 2

f ′(h)

f(h)

(
cosh θ〈A(∇h),∇h〉 −Hess(h)(∇h,∇h)

)
+ (n− 1) cosh2 θ sinh2 θ

(
f ′′(h)

f(h)
− f ′(h)2

f(h)2

)
+ (2n+ 1)

f ′(h)2

f(h)2
sinh2 θ − nf

′′(h)

f(h)
sinh2 θ(11)

+ (n+ 1)
f ′(h)2

f(h)2
sinh4 θ − nf

′′(h)

f(h)
sinh4 θ.

On the other hand, since f(t)∂t is a conformal vector field globally defined

on M
n+1

, we have that

(12) ∇Xf(t)∂t = f ′(t)X
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for all vector field X ∈ X(M
n+1

). Thus, taking into account Gauss formula
AX = −∇XN and using (12), from (5) we obtain the following equation

(13) ∇ cosh θ = A(∇h) + cosh θ
f ′(h)

f(h)
∇h.

Consequently, from (6) and (13) we get

Hess(h)(∇h,∇h) = 〈∇∇h∇h,∇h〉 =
1

2
∇h(sinh2 θ)

=
1

2
∇h(cosh2 θ) = cosh θ〈∇ cosh θ,∇h〉(14)

= cosh θ〈A(∇h),∇h〉+ cosh2 θ sinh2 θ
f ′(h)

f(h)
.

Inserting (14) into (11), it is not difficult to verify that several terms will be
canceled, and we deduce that

(15)
1

2
∆ sinh2 θ ≥ n

(
f ′(h)

f(h)

)2

sinh2 θ − f ′′(h)

f(h)
sinh2 θ − f ′′(h)

f(h)
sinh4 θ.

Thus, using the hypothesis that f ′′(h) < 0, from (15) we reach at

(16)
1

2
∆ sinh2 θ ≥ n

(
f ′(h)

f(h)

)2

sinh2 θ − f ′′(h)

f(h)
sinh2 θ.

So, from inequality (16) we obtain

(17) ∆ sinh2 θ ≥ −2
f ′′(h)

f(h)
sinh2 θ.

Hence, since we are assuming that Σn lies in a bounded timelike region of M
n+1

and using once more that f ′′(h) < 0, from (17) we conclude that there exists a
positive constant a ∈ R such that

∆ sinh2 θ ≥ a sinh2 θ.

But, from (13) we also have

(18) ∇ sinh2 θ = ∇ cosh2 θ = 2 cosh θ

(
A+

f ′(h)

f(h)
cosh θId

)
∇h.

Consequently, since we are also supposing that A and θ are bounded and using

once more that Σn lies in a timelike bounded region of M
n+1

, from (18) we get
that |∇ sinh2 θ| is bounded on Σn.

Therefore, we can apply Lemma 3.1 to obtain that sinh2 θ is identically zero,

which means that Σn must be a totally geodesic slice of M
n+1

. �

A spacetime M
n+1

obeys the ubiquitous energy condition (UEC) when, for
all timelike vector field Z ∈ X(M), its Ricci curvature satisfies Ric(Z,Z) > 0.
This last energy condition is stronger than the TCC and roughly means a real
presence of matter at any point of the spacetime. Furthermore, it is not difficult



A NOTE ON MAXIMAL HYPERSURFACES 899

to verify that, if M
n+1

= −I ×f Mn is a GRW spacetime obeying the UEC,

then f
′′
< 0.

On the other hand, as it was showed in Example 4.3 of [15], we can model
the anti-de Sitter space Hn+1

1 as the following GRW spacetime

(19) Hn+1
1 = − (−π/2, π/2)×cos t Hn.

Consequently, we have that the anti-the Sitter space (19), as the so-called
Einstein-de Sitter cosmological model −(0,∞) ×t2/3 R3 and certain big bang
cosmological models (see, for instance, Chapter 12 of [16], Chapter 5 of [8] or
Chapter 5 of [12]), constitute examples of GRW spacetimes obeying the UEC.
In this case, since the hypothesis f ′′(h) < 0 in Theorem 3.2 is automatically
satisfied, we obtain the following consequence:

Corollary 3.3. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the
UEC and whose Riemannian fiber Mn is complete noncompact. The only com-
plete noncompact maximal hypersurfaces Σn with polynomial volume growth,

lying in a timelike bounded region of M
n+1

, whose hyperbolic angle and second

fundamental form are bounded, are the totally geodesic slices of M
n+1

.

3.2. Nonexistence of maximal hypersurfaces

Proceeding with the context of the previous subsection, we get the following
nonexistence result.

Theorem 3.4. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the
TCC and whose Riemannian fiber Mn is complete noncompact. There are no
complete noncompact maximal hypersurfaces with polynomial volume growth,

lying in a timelike bounded region of M
n+1

, whose hyperbolic angle and second
fundamental form are bounded and such that f ′(h) 6= 0.

Proof. Let us suppose by contradiction the existence of such a maximal hy-
persurface Σn. Since our ambient spacetime obeys the TCC, from (16) we
obtain

(20)
1

2
∆ sinh2 θ ≥ n

(
f ′(h)

f(h)

)2

sinh2 θ.

Thus, since Σn is contained in a timelike bounded region of M
n+1

and assuming
that f ′(h) 6= 0, from (20) we obtain that

∆ sinh2 θ ≥ a sinh2 θ

for some positive constant a ∈ R. At this point, we can reason as in the last
part of the proof of Theorem 3.2 to conclude that Σn must be a totally geodesic

slice of M
n+1

, which corresponds to a contradiction with the hypothesis that
f ′(h) 6= 0. �
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Ishihara proved that an n-dimensional complete maximal hypersurface im-
mersed in the anti-de Sitter space Hn+1

1 must have the squared norm of the
second fundamental form bounded from above by n, and that this bound is
reached only by the maximal hyperbolic cylinders Hm(− n

m ) × Hn−m(− n
n−m ),

with 1 ≤ m ≤ n− 1 (see Theorems 1.2 and 1.3 of [13]).
Taking into account once more the GRW model (19) of the anti-de Sitter

space Hn+1
1 and adopting the terminology established by Aledo, Aĺıas and

Romero in [3], the open regions given by − (0, π/2)×cos t Hn and − (−π/2, 0)×cos t

Hn are called, respectively, the chronological future and the chronological past
of Hn+1

1 . Considering this context and using Ishihara’s result, we obtain the
following consequence of Theorem 3.4.

Corollary 3.5. There are no complete noncompact maximal hypersurfaces with
polynomial volume growth, lying in a timelike bounded region of the chronolog-
ical future (past) of Hn+1

1 and whose hyperbolic angle is bounded.

4. Entire solutions for the maximal hypersurface equation

In this last section, we will apply our previous uniqueness and nonexistence
results on maximal hypersurfaces in order to study entire solutions of a suitable
maximal hypersurface equation in GRW spacetimes obeying the TCC.

Let Ω ⊆Mn be a connected domain of the complete noncompact Riemann-
ian fiber (Mn, 〈 , 〉M ). For every u ∈ C∞(Ω) such that |Du|M < f(u), where
|Du|M stands for the norm of the gradient Du of u on the metric 〈 , 〉M , we
will consider the (vertical) graph over Ω determined by a smooth function
u ∈ C∞(Ω), which is given by

(21) Σ(u) = {(u(x), x); x ∈ Ω} ⊂ −I ×f Mn.

The metric induced on Ω from the Lorentzian metric (1) via Σ(u) is

(22) 〈 , 〉 = −du2 + f2(u)〈, 〉Mn .

The graph is said to be entire if Ω = Mn. From (22), we conclude that a graph
Σ(u) is a spacelike hypersurface if and only if |Du|M < f(u).

When Mn is a simply connected manifold, from Lemma 3.1 of [7] we have
that every complete spacelike hypersurface Σn in −I ×f Mn such that the
warping function f is bounded on Σn is an entire spacelike graph in this GRW
spacetime. In particular, this happens for complete spacelike hypersurfaces
bounded away from the infinity of −I×fMn. However, in contrast to the case
of graphs into a Riemannian space, an entire spacelike graph in a Lorentzian
spacetime is not necessarily complete, in the sense that the induced Riemann-
ian metric (22) is not necessarily complete on Mn. For instance, Albujer [1]
has obtained explicit examples of noncomplete entire maximal graphs in the
Lorentzian product space −R×H2.
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It is not difficult to verify that the future-pointing Gauss map of Σ(u) is
given by

(23) N =
f(u)√

f2(u)− |Du|2M

(
∂t +

1

f2(u)
Du

)
.

Moreover, the second fundamental form A of Σ(u) with respect to its orien-
tation (23) is given by

AX = − 1

f(u)
√
f2(u)− |Du|2M

DXDu−
f ′(u)√

f2(u)− |Du|2M
X

+

(
−〈DXDu,Du〉M

f(u) (f2(u)− |Du|2M )
3/2

+
f ′(u)〈Du,X〉

(f2(u)− |Du|2M )
3/2

)
Du(24)

for any tangent vector field X. Consequently, denoting by div the divergence
operator on Σ(u), the mean curvature function H(u) associated to A is given
by

H(u) = −div

(
Du

nf(u)
√
f(u)2 − |Du|2M

)
− f ′(u)

n
√
f(u)2 − |Du|2M

(
n+
|Du|2M
f(u)2

)
.

The differential equation H(u) = 0 with the constraint |Du|M < f(u) is called

the maximal hypersurface equation in the GRW spacetime M
n+1

= −I×fMn,

and its solutions provide maximal graphs in M
n+1

.
Motivated by this previous digression, we will consider the following maximal

hypersurface equation

(E)


div

(
Du

f(u)
√
f(u)2 − |Du|2M

)
= − f ′(u)√

f(u)2 − |Du|2M

(
n+
|Du|2M
f(u)2

)

|Du|M ≤ αf(u),

where 0 < α < 1 is constant. We observe that (E) is uniformly elliptic and
that the constraint on |Du|Mn assures the boundedness of the hyperbolic angle
θ of Σ(u). Indeed, from (23) we obtain that

(25) |∇h|2 =
|Du|2M

f2(u)− |Du|2M
.

Hence, using (6) and (25) we see that |Du|M ≤ αf(u) implies cosh θ ≤
1√

1− α2
.

In order to study equation (E), we also recall that

|u|C2(M) = max
|γ|≤2

|Dγu|L∞(M).

According to this setting, from Theorem 3.2 we get the following Calabi-
Bernstein type result.
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Corollary 4.1. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the
TCC and whose Riemannian fiber Mn is complete noncompact with polynomial
volume growth. The only entire solutions of (E) such that |u|C2(M) < +∞ and
f ′′(u) < 0 are the constant functions u = c, with f ′(c) = 0.

Proof. We observe first that, under the assumptions of Corollary 4.1, the entire
graph Σ(u) is a complete spacelike hypersurface. Indeed, from (22) and the
Cauchy-Schwarz inequality we get

(26)
〈X,X〉 = −〈Du,X∗〉2Mn + f2(u)〈X∗, X∗〉Mn

≥ (f2(u)− |Du|2Mn)〈X∗, X∗〉Mn

for every tangent vector field X on Σ(u), where (as before) X∗ denotes the
projection of X onto the Riemannian fiber Mn. Hence, from the hypothesis
|Du|M ≤ αf(u) for some constant 0 < α < 1, jointly with (26) we get that

(27) 〈X,X〉 ≥ δ〈X∗, X∗〉Mn ,

where δ = (1−α2) infM f2(u) > 0. So, (27) implies that L =
√
δLMn , where L

and LMn denote the length of a curve on Σ(u) with respect to the Riemannian
metrics 〈 , 〉 and 〈 , 〉Mn , respectively. As a consequence, since we are always
assuming that Mn is complete, the induced metric (22) must be also complete.

Moreover, since we are supposing that Σ(u) is such that |u|C2(M) < +∞,
from (24) and using once more that |Du|M ≤ αf(u) for some constant 0 < α <
1, we obtain that |A| must be bounded on Σ(u).

On the other hand, from equation (5.9) of [5] we have that

dΣ = fn−1(u)
√
f2(u)− |Du|2MndM,

where dΣ and dM denote the Riemannian volume elements of (Σ(u), 〈 , 〉) and
(Mn, 〈 , 〉Mn), respectively. Consequently, assuming that Mn has polynomial
volume growth, the same will hold for Σ(u).

Therefore, following the same procedure of the proof of Corollary 5.1 in [5],
we can apply Theorem 3.2 to conclude the proof. �

Reasoning as in the proof of Corollary 4.1, we also obtain the following
nonparametric version of Theorem 3.4.

Corollary 4.2. Let M
n+1

= −I ×f Mn be a GRW spacetime obeying the
TCC and whose Riemannian fiber Mn is complete noncompact with polynomial
volume growth. There are no entire solutions u of (E) such that |u|C2(M) < +∞
and f ′(u) 6= 0.
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