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MAXIMAL MONOTONE OPERATORS
IN THE ONE DIMENSIONAL CASE

SANGHO Kum*

ABSTRACT. Our basic concern in this paper is to investigate some
geometric properties of the graph of a maximal monotone operator
in the one dimensional case. Using a well-known theorem of Minty,
we answer S. Simons’ questions affirmatively in the one dimensional
case. Further developments of these results are also treated. In
addition, we provide a new proof of Rockafellar’s characterization
of maximal monotone operators on R: every maximal monotone
operator from R to 2% is the subdifferential of a proper convex
lower semicontinuous function.

1. Introduction and Preliminaries

The maximal monotonicity of the subdifferential of a proper con-
vex lower semicontinuous functior. due to Rockafellar [6] is one of the
fundamental theorems in convex analysis. Many authors 1, 11} have
provided independent proofs for this theorem. Recently, Simons [8-
10] has generalized this result in several directions and has given very
elementary and simple proofs which do not depend on any difficult re-
sults. One of the generalizations [9, Theorem 6.1] is as follows; Let E
be a real Banach space and E* its dual space. Let v : E — RU {oc}
be a proper convex lower semicontinuous function. and 8¢ be the sub-
differential of ¢. If Q is a nonempty weakly compact convex subset of
E, ¢* € £* and, for all (z,2*) € G'r(dv), there exists ¢ € Q such that
(z—q, 2* —q*) > 0 then

(@ > {q"}) N Gr(0y) # 0.
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At the same time, he asked whether the corresponding result is true for
general maximal monotone operators: let M be a maximal monotone
opreator from E to 2 and Gr(M) be the graph of M in ExE*. Let
be a nonempty weakly compact convex subset of F, g* € E* such that
(Q x {g*})NGr(M) = 0. Does there necessarily exist (z,2*) € Gr(M)
such that for all g € @, {(z — ¢, 2* — ¢*) < 0.

Our basic concern in this paper is to investigate some geometric
properties of the graph of a maximal monotone operator in the one
dimensional case. In section 2, we answer Simors’ question affirma-
tively in the one dimensional case £ = R. Moreover, we verify that
this result remains true for the case where the poirt ¢* is replaced by a
nonempty compact convex set (*. This also answers in the one dimen-
sional case another question posed by Simons [9] for general Banach
space. After this, we give a characterization of maximal monotone
operators in R: every maximal nmonotone operator from R to 2% is
cyclically monotone, hence is the subdifferential of a proper convex
lower semicontinuous function by means of Rockafellar [6]. Actually,
this characterization was first proved by Rockafellar [7, Theorem 24.3,
p.232]. His proof was based upon some properties of the one-sided di-
rectional derivative of a proper convex lower semicontinuous function
and a characterization of the graph of a maximal monotone operator
as a complete non-decreasing curve [7, Sections 23 and 24]. However,
we will provide a simpler approach to that characierization. Section 3
deals with a refinement of the two theorems in the previous section.

Let M : R — 2% be maximal monotone and D M) be the effective
domain of M. If D(M) is a singleton {a}, then V(xr) = (—o0,0oc) if
r = a, M{(z) = 0 otherwise. Recail that Minty’s theorem [3] says: let
H be a finite dimensional Hilbert space, with real or complex scalars,
and M : H — 2" be maximal monotone. Then D(M) is almost convex
in the sense that D(M ) contains the relative interior of the convex hull
coD(M) of D(M). So, in the case where D(M) contains at least two
points, using Minty’s result [3], we know that D()A/) is a convex subset
of R. Indeed, let a, b € D(M). Clearly, (a, b) is contained in the
relative interior of coDD(M). Since D(M) is almost convex, the open
interval (a, b) is contained in D(A]), so is the clesed interval [a,b] as
desired. Hence D(M) is of one of the forms [a,b] (a,b), (a,b], [a,b).

Moreover, Gr(M} is path-connected by virtue of another theorem of
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Minty [4]. Since M is monotone, we have
(1.1) supM(xy) < inf M(xy) whenever x; < x;, 1y, 7o € D(M).

It is easily seen that M can be represented by

[inf M(x), supM(x)] ifa<z<b
M(x) = (o0, sup M(a)] fr=a

[inf M (b}, ) ifr=2%

0 otherwise.

In the above representation, we follow the usual convention
sup@ = —o0. inf @ = oc.

Recall that a set-valued map M : E — 287 is said to be cyclically
monotone provided

T

Z(a"/, — Lpo1,25) =0

k=1

whenever n > 2 and &g, 1, , oy € E, 1, = 19, and 2} € M (x), k =
1,2,--- ,n.

2. Applications of a theorem of Minty

THEOREM 1. Let M : R — 2'' be maximal monotone and Q be a
nonempty compact convex subset of R, ¢* € R such that (Q x {¢*}) N
Gr(M) = 0. Then there exists (z, z*) € Gr(M) such that

(2.1) (z—gq, 2 —q" <0 forallqe Q.

Proof. Since Q@ = [a,b] for some a,b € R, a <. b, and ¢* ¢ M(Q),
there exist (z1,27) and (z2,23) € Gr(M) such that

(2.2) (z1 —a, 2y —q¢") <0and (z2 — b, z5 -¢") <O0.
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We shall now prove that
(2.3) either 2) <a, 2y >¢" or z3>b, 15 <q*.

Suppose the contrary. By (2.2), we have z; > a 2} < ¢* and z3 <
b, 25 > q*, 50 2z} < q¢* < z5. By (1.1), we have a < z; < 29 < b.
Since M is maximal monotone, the range R(M) is convex by Minty’s
theorem [3], hence it must contain [z}, 23]. Thus there exists zg € R
such that ¢* € M(zp) and a < z; < z5 < 22 < b by (1.1), thus 2z € Q.
This contradicts the assumption. Therefore (2.3 is true. Moreover,
each case of the two possibilities in (2.3) clearly implies (2.1). This
completes the proof. O

In a similar way, we get the following generalization of Theorem 1.

THEOREM 2. Let M : R — 2%' be maximal ronotone and Q, =
la,b], Q2 = [c,d] be two closed intervals such that

(Q1xQ2)1Gr(M) =0.
Then there exists (z,z*) € Gr(M) such that
(z—q, 27 —q") <0 forall (q,q") € Q1 x Qa.
Proof. Since (Q1 x {c}) N Gr(M) = @, it follows from the proof of
Theorem 1 that there exists (z1,2]) € Gr(M) such that either z; <
a, z{ > cor z) > b, z; < c. Similarly, because (Q; x{d})NGr(M) =0,

we see that there exists (zy, 23) € (r(M) such that either 23 < a, 23 >
dor 23 > b, z5 < d. We claim that at least one of the two possibilities

(2.4) z21>b, 2 <c or zp<a, zy>d

must be true. If not, z; < a, 2§ > ¢ and 23 > b, 25 < d. Since
21 < a <b< zy, we have

(2.5) c<z] <zy<d

by (1.1). Applying Minty’s theorern [3] again to the domain D(M), we
know that D(M) contains [z;, 23], hence contains [a,b] = Q. More-
over,

(2.6) M(q) C[2].23] Cle,d] =Q2 forall g€ Q.
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(The first inclusion comes from (1.1) and the second one from (2.5).)
But the relation (2.6) obviously contradicts the assumption (Q1 X Q2)N
Gr(M) = 0. Thus (2.4) is true. Each case of the two possibilities in
(2.4) clearly implies the theorem O

REMARK. As mentioned in the introduction, Theorem 2 answers in
the one dimensional case another question posed by Simons [9, Re-
marks and Problems, p.1387] for general Banach space.

THEOREM 3. Let M : R — 28 be maximal monotone. Then M
is cyclically monotone, hence is the subdifferential of a proper convex
lower semicontinuous function.

Proof. 1f D(M) is a singleton {a}, M is represented by

(—oo,00) if z=2a

M(z) = {

0 otherwise.

In this case, M is clearly cyclically monotone, and the subdifferential

of the proper convex lower semicontinuous function ¢ : R — R U {oo}

defined by

i(z) k ifr=a

) =

bt ¢ otherwise,
where k is a real number. Now we assume that D(M) contains at
least two points. Let n > 2 and xp, z1,--, T, € R, z, = xg, and
zy € M(xi), k =1, 2,---, n. Since the z; s are not necessarily
distinct, it may be true that for some 0 <1 < 5 < n, r; = x; and
Tiy1, -+, ¢, are distinct. In this case, z;, x;4y, ---, x; is called a
cycle. We put Sy = ZZ:1<$I€ — rg—1, ;). Then So = S; + Ry where
S1 =3 h—it1(@k — Tk—1,7f) and Ry is the remainder part. Observe
that R; is the same type of summation as Sy except R, may be a cycle.
Anyway, by recursion, we have

m

So= > Sk
k=1

where each Sy is the corresponding sum of a cycie. So we may assume
without loss of generality that zy, 1,---, z, is a cycle. Then we can
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select a monotone function f: D(M) — R such that f(z) € M(z) for
all r € D(M), and f(zx) = 2}, k =1, 2,---, n Since D(M) is an
interval, f is integrable on D(M). For each k. we have

flee)(xs — xi_y) 2/ ’ f(t)dt

since f is monotone. Hence

Z(ka ~akon,wh) = Y flae) @k — wpoi)
k=1

b=z ]

=

o

=1 VT
= | syt
=0.
The second part of the theorem directly follows from Rockafellar’s re-
sult {6, Theorem B]. O

As a direct consequence of Theorem 3, we get the following.

COROLLARY. Let M : R — 2% he monotone. Then M is cyclically
monotone.

Proof. By Zorn’s lemma, M can be extended to a maximal mono-
tone operator M. It follows from Theorem 3 that M is cyclically
monotone, hence M is cyclically monotone.

REMARKS. 1. Theorem 3 implies that there is only one kind of

maximal monotone operators, namely, the subdifferential of a proper
convex lower semicontinuous function in R. However, Theorem 3 does
not hold even in R?. As shown in Phelps [5, Examples 2.21, p.26),
the linear map in R? defined by T'(zxy, x2) = (z2, —r) is maximal
monotone, but not cyclically monotone.
2. Due to Theorem 3, we observe that Simons’ result [9, Theorem
6.1] already contains the answer to his own question [9, Remarks and
Problems, p.1387] in the one dimensional case. To get the result in
general Banach spaces, Simons used the Ekeland variational principle
[2] and Mazur-Orlicz version of the Hahn-Banach theorem.
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3. Further developments

We begin with the following result which holds for general Banach
spaces.

PROPOSITION 4. Let f and g be proper convex lower semicontin-
uous functions on a Banach space E such that D(0g) = E. Let
QQ be a nonempty weakly compact convex subset of E. If for each
(2,2*) € Gr(0f), there exists (q,7*) € Gr(—0g) such that

q€Q and (z—gq,2" —q%) > 0.

Then
(Q@ x E*)NGr(df) N Gr(—08g) # 0.

Proof. Let (x,z*) € Gr(0f + dg). Then z* = u* + v*, where
(z,u*) € Gr(0f) and (z,v*) € Gr(dg). By assumption there exists
(g,q") € Gr(—0g) such that

(4.1) ge® and (r—qu*—gq")>0.
Since (z,v*), (¢,—q*) € Gr(dg), we have

(T—qv +q)=(r—qv" ~(-¢")) >0
Combining with (4.1), we obtain
(x—qr")=(r—qu +v")=(c—qu* —¢)+ (x—q,v* +¢*) > 0.
So we have proved: for (z,z*) € Gr(0f + 0g), there exists q € Q such
that (z —q,z*) > 0.
From the sum formula [5, Theorem 3.16, p.47], 8(f + g) = 8f + 8g.
Now apply Simons’ theorem [9, Theorem 6.1] to the subdifferential
O(f +g) = 0f + 0g (with ¢* == 0): there exists ¢ € Q such that
(g,0) € Gr(0(f + g)). This gives the desired result. O

Actually, we can recover Simons’ theorem [9, Theorem 6.1] from
Proposition 4, which implies that two results are equivalent. For the
sake of completeness, we state and prove Simons theorem.
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THEOREM. (Simons [9, Theorem 6.1]) Let f : E — RU {oco} be a
proper convex lower semicontinuous function, and 8f be the subdiffer-
ential of f. If Q is a nonempty weakly compact convex subset of E,
q* € E* and, for all (z,2*) € Gr(9f), there exists q € () such that
(z—q, z* —q*) >0 then

(@ x {q"}) " Gr(af) #0.

Proof. Take the function g = -¢* in Proposition 4. Then it fol-
lows from the assumption that for each (z,2*) € Gr(9f), there exists
(g,9*) € Gr(—3dg) such that

geQ and (z—-¢,z2*—q¢*)>0
because —dg(x) = ¢* for every z € E. By Proposition 4
(@ x{g"H) NGr(df) = (Q x E*)NGr(df) N Gr(—dg) # 0,

which completes the proof. ]

In one dimensional case, we can rewrite Proposition 4 as follows.

THEOREM 5. Let M and N : R — 2R be maximal monotone op-
erators such that D(N) = R. Let Q be a nonempty compact convex
subset of R. If for each (z,2*) € Gr(M), there exists (q,q*) € Gr(—N)
such that

q€Q and (z-q,2"—q") >0

Then
(@ x R)NGr(M)NGr(—N) # 0.
Proof. Directly from Theorem 3. O

As a special case of Theorem 5, we have the following.

COROLLARY. Let M : R — 2% be maximal monotone, and L be
a line segment joining two points (a,b) and (c,d) in R? whose slope
(d—b)/(c—a) is less than 0. Assume that LNGr(M) = 0. Then there
exists (z,2*) € Gr(M) such that

(z—q,2"—q") <0 forall (q,q*)€ L.
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Proof. Taking —N the straight line through two points (a,b) and
(c,d) in Theorem 5, we get the result. O

LEMMA 6. Let L be a line segment joining two points (a,b) and
(e,d) in R* whose slope (d— b)/(c — a) is real and greater than (. (We
may assume a < c.) Then there exists a maximal monotone operator
M : R — 2% such that LN Gr(M) = @ and any point (z,z*) € Gr(M)
does not satisfy the inequality

(z—q, 22 —q") <O forall(q,¢") € L.

Proof. Define M : R — 2F by

?:Z(w~u)+d f2a~c<r<a
M(z) = (—oc, b] ?f rT=%a—c
[dv OO) ifr=c¢
0 otherwise.
Then M is a desired maximal monotone operator. 0

REMARK. We can take another M : R — 2% as follows:;

d=bx —e)+b ifec<a<2—a

M(z) (—oc, b if x =«
I(z) =
[d, o0) fr=%2c—a
0 otherwise.

Combining Theorem 1, the Corollary of Theorem 5 and Lemma 6,
we have the following.

THEOREM 7. Let L be a line segment joining two points (a,b) and
(c,d) in R%. The slope of L is < 0 if and only if for each maximal
monotone operator M : R — 28 with L N\ Gr{M) = 0, there exists
(z,2*) € Gr(M) such that

(z—4q, 2 —q") <0 forall (q,¢") € L.

As a direct consequence of Lemma 6 and the remark following, we
get the following.
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THEOREM 8. Let P be the convex hull of a finite subset {z;, za, -,
Tn} in R%. (We may assume that each x; is an extreme point of P and
the set of line segments {T;T;31}, , consist of the edges of P. Here,
Tny1 = x1.) If we have at least one 1 < ¢ < m such that the slope of
T;T;+1 is real and greater than 0, then there exists a maximal mono-
tone operator M : R — 2% such that P N Gr(M) = @ and for any
(2,2*) € Gr(M),

(z—q, 2" —q*) <\ for all (q,q") € P

is not true.

REMARK. Theorem 8 tells us that the conclusion “there exists (z, z*)
€ Gr(M) such that

(z—4q, 2" —¢"y < 0Ofor all (¢g,q") € P

does depend on the shape of the given compact convex set P. Hence
it is not unreasonable to guess that Simons’ question [9] for general
maximal monotone operators on a Banach space may have a negative
answer.
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