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ON WEIGHTED COMPACTNESS OF COMMUTATORS OF
BILINEAR FRACTIONAL MAXIMAL OPERATOR

QIANJUN HE AND JUAN ZHANG

ABSTRACT. Let M, be a bilinear fractional maximal operator and BM,,
be a fractional maximal operator associated with the bilinear Hilbert
transform. In this paper, the compactness on weighted Lebesgue spaces
are considered for commutators of bilinear fractional maximal operators;
these commutators include the fractional maximal linear commutators
M]a,b and BMi’b (j = 1,2), the fractional maximal iterated commutator
M, 5, and BM_ z, where b € BMO(R?) and b = (b1, b2) € BMO(R?) x
BMO(Rd). In particular, we improve the well-known results to a larger
scale for 1/2 < ¢ < oo and give positive answers to the questions in [2].

1. Introduction and main theorems

Let L be a linear operator from a Banach space X to another Banach space
Y. We call L is a compact operator if the image under L of any bounded subset
of X is a relatively compact subset of Y. In functional analysis, an important
branch is the theory of compact operators. One of classical examples of compact
operators is the compact imbedding of Sobolev spaces, by such imbedding, it
can be converted an elliptic boundary value problem into a Fredholm integral
equation. We refer the interested reader to [12,21] and references therein for
more background and related results.

In 1978, Uchiyama [29] improved the boundedness to compactness if the
symbol is in CMO(R?), where CMO(R?) denotes the closure of C°(R?) in
the topology of BMO(R?). The interest in the compactness of commutators
in complex analysis is from the connection between the commutators and the
Hankel-type operators. With the aid of the compactness of [b,T], it is easy
to derive a Fredholm alternative for equations with VMO coefficients in all LP
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spaces for 1 < p < oo (see [19]). In recent years, the compactness of commu-
tators has been extensively studied already, as Beatrous and Li [1] studied the
boundedness and compactness of the commutators of Hankel type operators,
Krantz and Li [20] applied the compactness characterization of the commuta-
tor [b, Tq] to study Hankel type operators on Bergman spaces, Chen and Ding
[8] proved that the commutator of singular integrals with variable kernels is
compact on R? if and only if b € CMO(R?) and they also established the com-
pactness of Littlewood-Paley square functions in [9]. After that, Liu and Tang
[25] studied the compactness for higher order commutators of oscillatory sin-
gular integral operators. Li and Peng [24] investigated compact commutators
of Riesz transforms associated to Schrodinger operators. The first author and
co-author [14] recently studied the weighted compactness of commutators of
Schodinger type operators and so on.

Since the multilinear setting is a natural generalization of linear case, com-
pactness results in the multilinear setting have just began to be studied (see
[2-7,32]). In [32], Xue proved the following weighted strong type estimates for
M., 5 with Az ) weights (see Definition 2.1).

Theorem A. Let 0 < o < 2d, 1 < p1,p» < o0, 1/p = 1/p1 + 1/p2 and
1/q = 1/p—a/d. For s > 1 with 0 < sa < 2d, if W® € A(p/s,q/s) and

b= (b1,b2) € BMO(Rd) X BMO(Rd) BMOQ(Rd), where vy = wyws, there
exists a constant C' > 0 such that

1M, 50 @)ooy < ClBlmaio2 11 zon ey Il o oo
where M, is the bilinear mammal operator and M  is the mazimal iterated
commutator of M, defined by

Ma(f,8)(x) = sup

et [ [ 1l
and

M {5.8)@) = 500 oo [ @)= )a ()=o) 0) ()

We continue defining the maximal linear commutators of M, as

Mol 8)@) = 50 e [ [ @) b))l

and
Mep(f.8)@) = 50 rams [ [ ) b))l

Remark 1.1. Using the method of [32], we can also get the weighted bounded-
ness of M}, ;. j =1,2.

M (£ 8)|zawr) < CllblIBMONf | o (ot 18l L2 (2

with same conditions as in Theorem A.
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For 0 < o < d, we can define a more singular family of bilinear maximal
operators

1
BM,(f,g)(x) = SUP B0, )T

Similarly, the maximal iterated commutator of BM,, is defined by

BM,, 5(f.8)(z)

/ (@ — )llg@ +v)ldy.
B(0,r)

S 1) b)) = bt + ) )+ )l
o,r
The maximal linear commutators of BM, are defined by

1
B 8)@) = s9p s [ @) ~ba o))+ )y

and

1
BMZ S 8)@) = sup s [ @) e )l el )l

By the definition of BM,,, it’s easy to obtain BM,(f,g) < CB,(|fl,|g|), where
fle —y)g(z +
CROECEY
R [yl

Thus, by the results in [15], we have the following weighted strong type esti-
mates for BM_ ; with Az 4) weights.

Ba(f:8)(x) =

Remark 1.2. Let 0 < a < d,1 < p1,ps < o0, 1/p=1/p1+1/psand 1/q = 1/p—
a/d. If 1 < a < min{p;, p2}, then for b = (by,b2) € BMO(R?) x BMO(RY) =:
BMO?(R?), the following statements holds.

(i) f1/2<qg<1,vg =wwy € Ay and W € A(E ag ), then there exists
a’1—q
a constant C' > 0 such that

IBM, (£ &)l o) < CllElmaos 1] or oty I8l 2o cuzoy-

(i) fg>1,p; >s; (j=1,2), vg = wiws € Ay and W € A(i 0q)’ where
i + é = 1, then there exists a constant C' > 0 such that

IBM,, 5(f, &)l Lewsy < Cllbllsmoz || fl Lor wrny 18l Lra (w2

Remark 1.3. Similarly, we can also get the weighted boundedness of BMi’b
(j = 1,2) with the fact BM,(f,g) < CB.(|fl, |g]),

IBM, (£, gllzaqs) < Cllbllsmollf Il Ler (wrry I8l Lra wp2)

with same conditions as in Remark 1.2.
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Recently, Bényi et al. [2] show that the compactness for commutator of
bilinear fractional integrals (include Kenig-Stein type operator B, ) with mul-
tiplication by CMO(RY) functions are compact operators from LP' x LP? to L9
for 1 < p1,p2 <ooand 1/qg=1/p; +1/p2 — a/d . Naturally, it will be a very
interesting problem to ask whether we can establish the weighted compactness
of commutators of fractional maximal operators with CMO(R?) functions. Fur-
thermore, can we extend the index ¢ to a larger scale? In this paper, we will
give positive answers.

Now, we formulate our main results as follows.

Theorem 1.4. Let 1/2 < g < 00, 0 < a<2d,1<py,ps <oo, 1/p=1/p1 +
1/p2 and 1/q = 1/p —a/d. For s > 1 with 0 < sa < 2d, if W* € A(z/s,q/5)
b € BMO(R?) and b = (by,by) € BMO?(R?), where vg = wyws, then M}Lb,
M2, and M, 5 are compact from LP*(wi") x LP2 (w5?) to L9(vg).

We remark that Theorem 1.4 also holds for a = 0. In this case, our results
not only covers the results in [31] but also improve their results to 1/2 < ¢ < 1.

Theorem 1.5. Let ¢ € (1/2,1) U (1,400), 0 < a < d, 1 < p1,p2 < 00,
1/p=1/p1+1/ps, 1/g=1/p—a/d, 1 < a < min{p1,p2} and vy = wiws. If
s> 1 with 0 < sa < d, then for b = (by,by) € BMO?(R%) and b € BMO(R?),
the following statements holds.

() If1/2<q<1and & € A 5 _as_,, then BM,

esys) a
as ' (I—-q)s
are compact from LP* (w}*) x LP2(wh?) to L(vk).
(ii) Ifg>1,p; >s; (j=1,2) and @° € Az aqy, where i—ké =1, then
BM,,,, BM?2, and BM_ ; are compact from LP*(wi*) x LP?(wh>) to

Li(vl).

b BMg’b and BMQJ;

We remark that the results are new for fractional maximal operators associ-
ated with bilinear Hilbert transform, and we also give the positive answers to
Question 3.4 in [2].

The paper is organized as follows: In Section 2, we will give some facts and
lemmas. The proof of Theorems 1.4-1.5 are presented in Section 3. A tacit
understanding in the present paper is that we use the notation A < B means
that there is an uninteresting constant C such that A < C'B. We do not keep
track of dependencies on dimension d.

2. Preliminaries
2.1. Multiple weights class

Given a Lebesgue measurable set £ C R, |E| will denote the Lebesgue
measure of E. Let B = B(x,r) be a ball in R? centered at = with radius » and
Q(z,7) be a cube in R? centered at x with the side length 2r. A weight w is
a non-negative measurable and local integrable function on R%. The measure
associated with w is the set function given by w(E) = fE wdz. For 0 < p < oo,
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we denote by LP(w) the space of all Lebesgue measurable function f(z) such

that
1/p
£l e w) = (/Rd |f(a:)|pw(x)da:> )

Recall that a weight w belongs to the classical Muckenhoupt class A, (1 < p <
00), if

P
7

o) (i o) <=

w € Aq means if there is a constant C' such that

|Q|/w<Clnfw for a.e. z € R%

Now, we defined the following multiple fractional type weights which are some-
how different from the weights in [22]. But it is a natural generalization of the
classical A, , weights in [27].

Definition 2.1. Let 1 < p1,p2 < o0, % = —1+1%2, p=(p1,p2) and 0 < g < 0.
One says that a vector of weights @ = (wy, w2) is in the multiple weights class
W€ A, if it satisfies

; N[ L _pfl)ia(1 _,,>£'
ag - S“p<|c2|/ > (|Q/Q“’1 |Q|/ <o,

where vg = wywe and each w; (i = 1,2) is a nonnegative function on R%. When

Q

q = 00, (IQI fQ v‘i) * is understood as ess. SUp,cq V- Moreover when p; =1,

1
’

(‘Q‘ Jow p’) " is understood as (infg w;)~ L.

We need the following characterization of multiple weights given by Iida [17].

Lemma 2.2. Let 1 < p1,ps < o0, % = p% + piz and 0 < g < co. A vector w of
weights satisfies W € Ap,q) if and only if

S o .

(1) Vg € A1+q(27%),

(i) w;? € Aryps, (1= 1,2

)
where s; = % +2— % — i (i =1,2). An analogy is available for ¢ = oo, if we

1

_1
(2-1) as the condition va re AL
P

regard the condition vU7€A1+q

We remark that the Az ) is multiple weights class Az for p = ¢, which first
introduced in [22]. This weights class A also have similarly characterizations
in Lemma 2.2.

For the classical Mukenhoupt weights class A,, it enjoys the following prop-
erties:

Lemma 2.3. Let 1 < p < oo. Then
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(1) If w € A, there exists a constant 6 € (0,1) such that w'*t® € A,. Both
0 and the A, constant of w'*? defend only on p and the Ay constant
of w;

(ii) If w € A,(RY), we have

1-p' ()
lim w(zc) dr=0 and lim %dm =0
N—oo Jizsn 2] N=oo Jigsn |z

(iii) If w € Aoo = Uj<peoo Ap, then there exists a constant 6 € (0,1) such
that for all cubes QQ and any set E C @,

0
u0) o (121)"
w(Q) Q|

We remark that (i) of Lemma 2.3 follows from [11] and (ii) of Lemma 2.3
follows from [13].
2.2. Bilinear fractional L(log L) type maximal operators

We first recall some notations about Orlicz spaces, more details can be found
in [28]. Let ¢ = t(1 4 log™ t), which is an important Young function. Then for
a ball B denote that

. 1
1l og 29, 2 :mf{)\>0:|m/3¢(|f(;j)|> i < 1}.

Note that the following inequality holds

1
& /B F(@)ldz < Ol | ngog ). 5-

Having the preliminary notations, for 0 < a < 2d, we give the definition of
bilinear fractional L(log L) type maximal operator as

Murgogr),o(f>8)(x) = sup |BI|| £l tog £).81l8] L(1og 1), 5
cx

Several weighted norm inequalities for M, and M (106 1), « Were established
in [26] and [10], respectively, we list the results in the following lemma.

1 _ 1 1 1 _ 1
Lemma 2.4. Let0<a<2d,1<p1,p2<oo,5—p1+p2,q—p

W= (wi,w2) € Awq) and vg = wiwz. Then
[Malf, g)”Lq(ufﬁ) < Clfll e (w;’;l)||g||mz(w§’2)a
and for s > 1, if W® € A(B- 1y,
HML(logL),a(ﬁ g)HLq(vz_J) < CHfHLm(wfl)||g||Lp2(w§2)
holds for every (f,g) € LP*(w)") x LP2(wh?).
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2.3. Weighted Frechet-Kolmogrov theorem

The following weighted Frechet-Kolmogrov theorem was proved by Xue,
Yabuta and Yan [33].

Lemma 2.5. Let w be a weight on R®. Assume that w=/®0—1) is also a weight
on R? for some pg > 1. Let 0 < p < 0o and F be a subset in LP(w). Then F
is sequentially compact in LP(w) if the following three conditions are satisfied:

(i) F is bounded, i.e., sup || f|| Lr(w) < 00;
feF

(ii) F uniformly vanishes at infinitely, i.c.,

lim sup/ |f(z)Pw(x)dz = 0;
N=oo fer Jiz|>N

(iil) F is uniformly equicontinous, i.e.,

Jm s [ 1fe4B) < f@)Put)is = o

Note that an operator 7 : V — Y is said to be a compact operator if T is
continuous and maps bounded subsets into sequentially compact subsets.

2.4. Some key lemmas

The following lemma due to Li et al. [23], which essentially was proved in
[18].

Lemma 2.6. Under the condition of Theorem 1.5, we can choose auxiliary
indices s1 and sz so that s1 € (1,p1) and s2 € (1,p2). Assume in addition that,
for these indices,

p1 b2
a > max { (51(%)')/7 (82(52)’)/} > 1.

4 ’ ! /
$1 <p1> < (p—l) and s (P2> < (]2) .
S1 a S92 a
In order to obtain our results, we will utilize new auxiliary lemmas for max-
imal operators.

Then we have

Lemma 2.7. Let 0 < a < 2d, b € CP(RY) and x,t € R For any balls
By := B(xo,r) 2 & and By := Ba(xo,7 + |t|), there exists a constant C' such

that for any k € (1,00),
[ e Wxe () X8 OXED) | 0 4y ()1 £9) (=) gtz
B, JB, | |Bil*74 | Bo|?~d

< O(|tIMa(f.8) (@) + [tF Mg 1),0 () (2))-
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Proof. It’s sufficient to consider two cases as follows: r < [¢| and r > |¢|.
Case I: r < |t|. For y € Ba, we have
ly =z =t < |y —wo| + |z — wo| + [t| <7+ [t + 7+ [t] = 2(r + [1]) < 4f¢].
It implies that

ot

1
<=~ IVl g [ Sl

d

1
o= o=tV ey [ [ 1l dyd
|B ‘ Bz J Bs
< ClIVO| oo (ray [t Ma(f, 8) ().
Case II: r > |t|. Notice that by adding and subtracting

[ X E e 0 b o) (2 bt

X 1 X 1 _ XB2\Y)XBs
2 W) _ xeaWxmy(e ‘|bx+t>—b< I 9)le(=) dydy=
| B1| | Ba|

and

/ / X OBy 1) — () £ 3 ()l
Bs J By |BQ|

we can compute

/32/32 X5, (Y XB1 z) XBz(?/)XBQ(z)

|Bi[*~ 4 |Bo|?~ 4
<L

XB: (¥)x8, (2) XBl(y)XBl(Z)’b(x+t)—b(y)If(y)lg(Z)Idde
“J. ),

|Bi[?~ 4 |Bo|?~ 4
LQ x/;g

=: A1 + Ay + As.

Estimate for A;. Since [z +t—y| < |z —xo|+ |y —xo| +|t| < r+r+]|t] < 3r
for y € By, it implies that

|Bo|*d — |B*"d 1 / /
A = —= — b(x+t)— byl f(y)lle(z)|dydz
P e Bl|< ) = Il )ls(:)

By>% — B> | ] s
< Cr||Vb| 1 = )|dydz.
— H ||L (Rd) |BQ|27E ‘Bl|277 Bl Bl ||g | y

To obtain the desired result, we need to prove that

[Bof’~7 — [Ba]*77 _ ol
|Bo|?~d T

(+1)=b()[|f (v)lla(2)|dyd=

X5, W)xs, (2) _ x8, (Y)x5,(2)
U)X ) b0 s

XBllBg ;iBi : XBréyﬁBg(Z) ’ [ba+t)=by)[|f (v)ll8(2)|dyd>

(2.1)
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Since

[BoP =% = [Bif"8 _ (r ) — e
BoP~% (r+ el

d

24
()]
T

to prove (2.1), we begin with the case 0 < 2 — & < 1. By the Bernoulli
inequality and binomial theorem, for r > |t|, we have

ad
+ 4 1< |14+(2= AN <M
(1 r 1 1 (2 ) , 1 O ,

Next let us deal with the case 1 < 2 — % < 2. Through a similar discussion,
for r > |t|, we have

(Hg)2‘jd_1: (14 1) (Hgﬁ')“jd_l
<1+|;> [1+(1—‘;‘)|;5|] 1
< (el (1eelt) -

<ol

r

<

IN

This finishes the proof of inequality (2.1).
Hence, using inequality (2.1), we obtain that

Ay < CItIM(f,8)(x).
Estimate for As. Note that for any k£ > 1
|b(x + ) — b(y)| = [b(z + ) — b(y)|*[b(z + ) — b(y)|*~*
1_
< Olb]

|~

1 1
Rd)||Vb||£oo(Rd)|x +t—y|*

=~ &

1

-1 i 1
S CHb”Look(Rd) ||Vb||£oo(Rd)r k.
By the above inequality and Hélder’s inequality, we have that for k£ > 1

= N A RO OTERIT

ok
<o T / / £ @)lle(2)ldydz
|BQ| 4 JB, JB2\By

1 |Bs| — |B
;7| 2l = | 1‘ML(logL),oz(fv g)(x).
| Ba|

<Cr
Since
|Bo| = [Ba| _ (r i) = r _ 4 Cltrtt =t

[Bof () T rd S
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then we have
A2 < Ctr%_lML(logL),oz(fa g)(x) < Ct%ML(logL),a(f& g)(l‘)

Estimate for Az. With the similar argument, we have
1
A3 < C(|t|Moz(f7 g)(x) + ik ML(logL),a(f7 g)(m))
Thus, we obtain the desired results. O
The following lemma also plays a key role in the proof of our theorems.

Lemma 2.8. Let 0 < o < d, b € C®(R?) and z,t € RL.  For any balls
By := B(x,r) and By := Ba(z,7 + |t|), there exists a constant C such that for
any s € (1,00) and k € (1,00),

/B 82z —y)Ixs, (v) _ |8(22+ 2t —y)Ixs,(Y) b(z +1t) — b(y)||f(y)|dy

|By|' 4 - | By~
< Clt|(BMa(f,8)(x) + BMa(f, m2:8)(x))
+ O (BMas(f°,8°) (2))* + BMa(f, 7218 = 8)(2)).
Here, 7, is the shift operator 7, = g(x +a) and s’ = s/(s — 1).

Proof. The same argument as in Lemma 2.7, we also need to consider two
cases.
Case I: r < |t|. For y € Bs, we have

|z +t—y| < |y —o|+ [t] <r+ 20t < 3¢,
which implies that
g(2r —y)xm,(y) &2z +2t—y)xs,(y
[ | ) )B*)MMx+w—b@Hﬂwwy
2

1
<z 4+t =yl Vbl poo (re) o—s /B |f(W)llg(2z — y)|dy

|B1|* 4 |By|' 4
|Bi|'~d

1
o=yl Vel iy [ )l + 21— )iy
2

< CIVb[| oo ra) ([tIMa(f, 8) (2) + BMa(f, 7218) ().

Case II: » > |t|. In this case, we need to add and subtract the following
term

[ B e ) - o)l lls2e iy
By |Ba|' 74

and

[ e 1)~ sl w2 — )l
B |BQ| d

Hence, we obtain that
|8(22 + 2t — y)|x5, (y)

82z — y)Ixs, (y) o
/Bz |By|'~d By [b(z+1)=b(y)[1.f (v)dy
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Xz (y |b(z+t)—b(y)|| £ ()| |8(2x — y)|dy

S/B2 |Bl|125
+/Bz (
+/32

= El + E2 + Eg.
Estimate for E;. Since |+t —y| < |y — x|+ [t| < 7+ |¢t| < 2r, then use the
similar argument of A; in Lemma 2.7, we have

[Bo|'= % — By 1 /
E < = _ b N —b 9r — )ld
1 < Bo|— % B3 Bll (z+1) = b/ (Y)llg2z - y)ldy

1
< CtVbllLoc(Rd)W/B b(x + 1) = b(y)||f (v)llg(2z — y)ldy

< CtBM,(f,g)(x).
Estimate for F5. By Holder’s inequality for s > 1, we have

(f 2<|f<y>||g<zx_y)|>sdy)

y)  xB(y)
|Bo|'~d  |Bo|'d

82z — y)Ixe,(y) _ |82+ 2t —y)Ixe W) | gy
i P 2 o))l 1)

[b(z+1) =b()I[f ()llg(2z — y)|dy

i
7
s

1 / °
Ey< ——= b(z+t)—b(y)|° d
2 < T (/BMH )b y>

Notice that for k > 1
[b(z +t) = b(y)| = [b(z +t) — b(y)
1-L <
S C”bHLOCk(S]Rd) ||Vb||zfx)(Rd)|.iL‘ + t - y

bl +1) — b(y)[* 7

1
ks’

1
ks’

-3 = s
< C”b”Look('fRd) ”Vb”z'oo(]ygd)rks/ .
Applying the above inequality, we have

Byl — B\ ¥
By <C (':B:') PR (BMas(f°, 8°)())

o s s 1
< Clt[r7 (BMas(f*,8°)(x)) -
Estimate for E3. Using the triangle inequality, we have

By < iy [ e+ 0) = b))z + 2 =) — (2 — )y

< C|b]| oo (rty BMo (f, T2:8) ().

0 =

This finishes the proof.
3. Proof of Theorems 1.4-1.5
This section is devoted to proving Theorems 1.4-1.5, some proof ideals are
inspired by [2], [30] and [31].
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Proof of Theorem 1.4. We only prove M;b and M ; are compact, as the
proof of ./\/li’b can be get similarly.
Since

(M b, (f,8)(@) = Moy, (f,8)(@)] < Mgy, 4, (f,8)(@)

and by,by € CMO(R?) ¢ BMO(R?), then by Remark 1.1, the commutator
M}],b is continuous on L?(vL). Hence, for any bounded set F' C LP*(wi")
and G C LP2(w}?), where f € F with [[f||1p () < C, and g € G with
8]l Lr2 w2y < C it’s sufficient to prove

F={M,y(f.g): f€F, gcG}

is a sequentially compact subset for b € CMO(R?). According to a density
argument, if b € CMO(R?), then there exists a sequence of functions b, €
C>(R%) such that

[b = bellBmo(re) < €.
Thus, by Remark 1.1, we show that

”M}Lb(fa g) — Mi,be(ﬁ g)HLq(v%) < ||Mi,b7b5(fa g)”Lq(va)
< C|b— b
< Ce.

\BMO(Rd)Hf”Lm (wfl)HgHLpz(wg?)

Therefore, by Lemma 2.2, it is enough to prove that F is sequentially compact.
Next, we will verify F satisfies the conditions (i)-(iii) in Lemma 2.5 for b €
C>(R%). The proof is divided into two steps since the condition (i) is immediate
obtained by Remark 1.1.

Step I. F satisfies condition (ii).

Since the uncentered maximal operator and the centered maximal operator
can be controlled each other, it only need to consider the centered fractional
maximal operator. Choose R large so that supp b C B(0, R), then for z > N >
max{2R, 1}, we have

1
1
Mb)@ < Cop s [ [ L))y

r>0

61| oo (re)
SCSUPﬁ/ fly dy/ lg(2)|dz.
r>0 | B(z,r)[*~ 4 B(O,R)| ) B(z,r) )l

Since |z| > N > max{2R,1} and B(z,r) Nsuppb # 0 it implies that r >
|z| — R > |x|/2, this give us that

Mg b (f,8)(@)]

1Al zos oy 8l o oz - ’
< Csup L) R () /( " Wy
B(O,R

[
[

[N
o

r>0 |B(z,r)|*~ 4

(/ w;pé (z)dz) .
B(z,r)
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Note that for z € B(x,r), we have |z| < |z| + r < 3r. Thus, the following
inequality holds

(Mo (f,8)(@)]

C / - - vy
< — wy 1 (y)dy / w, D2 (2)dz
|| 2d=e ( BO.R) BO.Jz)) (2)

1
. 71 w pz(z) P2
+C / wy P (y)dy / —2 "
< BOR) j2/>Ja| |2](4=P

1
7

< ¢ -p} d " —ph d i
= |xf2dme </B(O,R) o W) y) (/B(O,:n|)w2 (2) Z)
1 1
+ Ci % (/ w;p’l (y)dy> " (/ w;p’z (z)dz> E
— (2 Ha])?= \ Jpo,r) |2|<2!|a|

oo

wi " (y)dy : / wy " (2)dz "
Z 2l\$| </B(0,R) ! BO2al)

Therefore7 for ¢ > 1, by Minkowski inequality, we obtain

(/ |M;,b<f,g><w>qU;<x>dx>
|z|>N

i ]
2

1
q

<c (/ oy Mbalf 2N <x>dx>
=1 I-IN<|x| <27
o 0 1 %
;; (2J+171N)2d70¢ ( B(0.29 N) w( ) )

1

1 1
’ Py o Py
X (/ wy 7 (y)dy) (/ ‘ wy P (z)dz) .
B(0,R) B(0,29+!N)

Using Lemma 2.2 and Lemma 2.3, we have

1

( / ML (f, g><x>|qvg<x>dx>

|z|>N

<C / U
;; 24 1N PR (QJHN)*Q < B(0,29+LN) (

1 1
’ p,l / p/2
X (/ ‘ wl—m (y)dy> (/ ‘ wQ—PQ (Z)dz>
B(0,2i+LN) B(0,29+1N)

Q
8
~
IS8
8
SN—
Q=
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R\ % R\ %
SCZ d67z dé;l_i_del () ' SC(N) 1'

j= 1271 1=02"1

For ¢ < 1, since (3 a)? < Y2, af, similar to the above estimates, we can
obtain

/ ML, (F. ) ()| () da
|z|>N

29-IN<||<29 N

<cy | ML (., 8) (@) | ()
j=1
R\
<o(v)"

Then, for 1/2 < g < oo, we have

lim Mo (f,8) (@) Tuf(2)dz = 0

N—o00 |:E‘>N

holds, where f € F and g € G.
Step II. F satisfies condition (iii).
It’s enough to show that

T [ML4(F.8)C +6) = MEp(F2)Ollir) =0

For two fixed points z,¢ € R? with |t| < 1, without loss of generality, we
may assume that

Mao(fog)(@+1) S Mg, (fig)() and Mg, (f,8)(z) < co.
Thus, for any € € (0, 1), there is a ball By = B(xg,r) 3 z such that

61 gy [ ) bWl s > (1= OME(f.2))

Since x +t € B(xg,r + |t|) =: Bg, we infer that

1 1
62 (g [ [ 0 - bl Sl < M5 ) )
Using inequalities (3.1) and (3 2), we obtain
(1= e)Mg,(f.8) () = Mg o (f,8)(x +1)

|Bl|12 z/B /B YIIFw)llg(2)ldydz
Bz|12 /B/B b(y) 1 (9)I5(=)ldyd:

<o bz +t) bz |//
< y)llg(z)|dydz
|B1|2 By
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\Bl /B /B — bWl (y)lle(2)dyd=

- \BﬂT% /B /B [b(z + 1) = b(y)[1.f (v)l|8(2)|dyd=
< CItIVb]| poe ey Ma (£, 8)(@)

Dt

It follows from Lemma 2.7 and letting ¢ = |¢|, which implies that for any
k>1

X yxe D) X e -+ ) — b1 o) (e

|Ma,b(f’ g)(m + t) - lex,b(fa g)(x”
< [tIMa(f,8)(@) + [tF Mrgogn).a(f.8) (@) + ML (£, 8)(2).
Hence, by Lemma 2.4 and Remark 1.1, we have that for any k£ > 1
MG (f,8) (- + 1) = Mg, (f,8) ()l agos
1

S |t|||Mo¢(f7 g)HLq(va) + |t‘ k ||ML(logL), (f? )”L‘I + |t|||M (f7 g)HLq(va)

1
S U+ IO s ory I8l os uzzy S T+ [EF
Thus the desired result holds
lim MG (f,8) (- + ) = MG 4 (f,8) (Ml Loy =0

[t]—

Next, we will prove M 7 is compact. If b € CMO(R?) x CMO(R?), then
for any € > 0, there exists b° = (b5,b5) € C(RY) x C°(R?) such that
[6; — b5llBmo(re) < € (§ = 1,2), then by Theorem A, we have

M, 5(f.8) — Mmgf(f, )\
< Mo, 05 60) (Fr @)l Lagoay + HM (b1,b2—b3) (f> &)l La o)
< CllbellBmoa) b1 — b§||BMo R) [l Lor w18l Lo (b2

+ Cllb1llBmora)llb2 — b3llBMo®a) 1 f || Lo1 (i1 18]l o2 (w2)
< Ce.

Thus, to prove M ; is compact on L?(v%) for any b € CMO(R%) x CMO(R%),
we only need to show that M ;s compact for any b € C°(R?) x C(R9). For
arbitrary bounded sets F' € Lpl( ") and G € LP2(wh?), let

G={M,_;(f.g): fE€F, geG}

Then, we shall prove that for any b € C2°(R%) x C2°(R%), G satisfies the condi-
tions (i)-(iil) of Lemma 2.5.
By Theorem A, we can get (i) holds immediately.
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Assume that b; € C°(R?) and suppb; C B(0,R), j = 1,2. For any |z| >
N > max{2R,1}. Then by Hélder inequality, we have

M, 5(f:8 )( )|

p e [ / b1 ()l b2(2)]1£ ()] (=) dydz
>0 |B(z,1) B(0,R) /B(0,R)

(161 | oo (Ra) | b2]| Loe (2
s =l >/ / v)ls(2)ldydz
>0 |B(x,7)] B(0,R) OR)

1 1

f » P17y |18]| 1,p P2 Py , P

Moot ol ocog [ wrtway) ([ e
|z| B(0,R) B(0,R)

where the last step is due to r > |z| — R > |z|/2. Thus, it follows that

U‘i x
/|ac>N M, 5(f; ) (@)[vg (w)de < C |<1§§i)qu,

|z|>N |z

IN

IN

A

by Lemma 2.2, % <g<ooand 1< 1+q(27%) = q(2 — §) < oo we have
U € Ag(a—=y. Thus, together with Lemma 2.3(ii) yields that

lim |Ma7[;(f7 g)(:c)|v37(z)dx = Oa

N—oc0 ‘LE|>N

whenever f € F and g € G, that is, the condition (ii) is satisfied.

It remains to show that the set G is uniformly equicontinuous. It suffices to
verify that for any e € (0,1), if |¢| is sufficiently small and dependent only on
€, then

(3.3) [ M, 5(F.8)+1) = M 5(£,8) (Ml ooy < Ce

holds uniformly for f € F and g € G.
For two fixed points z,¢ € R? with |t| < 1, without loss of generality, we
may assume that

M, 5(f.g)(@+1) <M 5(f,g)(x) and M 5(f g)(x) < oco.
Thus, for any € € (0, 1), there is a ball By = B(xg,r) 3 = such that
(3.4) = /B2 b1 () — b1 (y)|[b2(x) — b2(2)|[f (y)||8(2)|dyd=
> (1— M, 5(f,8)(2).

Since x + t € B(xg,r + |t|) =: Ba, we infer that

M, 5(f.8) (@ +1)
- IBQIIQd/B /B b1 (x+1) = b1 (y)||b2(x+1) —b2(2)[| f (y) |8 (2) |dyd=.

Using inequalities (3.4) and (3.5), we obtain
(1 =M, 5(f,8)(x) = M, 5 (f 8)(x + 1)

(3.5)
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< s o L 1)~ @) = b1 (2
- L [ ) =@l + 0 = () )l

|b1(1‘—|—t>—b1( )||b2(.13+t —b2 I
< ‘Bl|2—— /Bl /B1 ||g \dydz
|b1 (2 + 1) — b1 ()]
+ |Bl‘2_, [ [ st ) =m0 )t
|ba (2 + 1) — by ()| B Nduds
D O] e+ = @l )y

+|Bl|2—3/3 /B b1 (2 + 1) — bi(y)||b2( + ) — ba(2)[| £ ()||&(2)|dyd=
|B|1 /B /B b1 (2 + 1) = ba(u)1ba + 1) — bo(2)]1£ () 1(2) [y

Note that the fact [b;(x +t) — b;(z)| < C||Vb;||poo (ray|t] for i = 1,2, it follows
that
(1—=eM,, 5(f.8)(x) =M, ([, 8)(z + 1
< It HVblHLm(le)||Vb2HL°°(]Rd)M (f,2)(x)
+ [E Vb1 oo (ray [1b2]| oo () Mo (f, 8) ()
+ (#1101 ]| oo () [ V2] oo (ray Mo (f, 8) ()

XB (Y)xB, (2) X8 (¥)XB,(2) B P
/B2 /B2 |‘B1 2—7 |BQ|2_Q ‘b1($+t) bg(y)HbQ( —|—t) b2( )|

y)lle(2)|dydz.

Snmlarly as in the proof of Lemma 2.7, let € = [¢|, then for any k > 1, we have
M 5(f )+ 1) = M, 5(f,8) ()]

1
S [HMa(f;8) (@) + [HF MLgog ),a(f; 8) (@) + [HIM,, 5(f, 8)(2).
Therefore, by Lemma 2.4 and Theorem A, we give that for any k£ > 1

IME b (f8) (- + ) = ME o (f:8) Ol oy S 18]+ 2%

w

Thus, we conclude that (3.3) holds for whenever f € F and g € G. This
completes the proof of Theorem 1.4. (I

T

Proof of Theorem 1.5. We use the similar method in Theorem 1.4, only prove
BM, ! pand BM § are compact, since the proof of the commutator BM b can
be get similarly. By a change of variables, this maximal commutators can be
rewritten as

1

ML 8)(@) = sup s [ ) — b W)s(22 — )l
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Similarly, we only need to prove that for b € C2*(R?), § = {BM_, ,(f,¢g) :
f € F, g € G} satisfies the conditions (ii)-(iii) of Lemma 2.5.

Suppose that b have a compact support set B(0, R) and |z| > N > max{2R,
1}. Then, for suppb N B(z,r) # 0, we have r > || — R > |z|/2 and |2z — y| <
|z —y| + |z| < 3r. It implies that

(3.6) Byl <o [ G,

Bo,R) |22 —yle

For 1/2 < ¢ < 1, by Holder’s inequality, we obtain that

/ BM (/. 8)(2)| 0 (x)dz
|z| >N

e q
2 —
< §j/ / g2 =)l 4\ o (440
= JriN<poi<2in [JBoR) 22 —yldme
> q
2r —
<> / / fWligx =yl ; 4,
=1 \J2'N<2|<2iN JB(0,R) |22 — y|

1—q
1‘1
—a
X / vy (z)dz .
21-IN<|z|<2IN

Since |z| > 297N and |2z — y| > 2|z| — |y| > || > 27!N, by a change of
variables, we give that

/ BM (/) ()] 0% (2)da
|z|>N

00 q 1—q
= \Jlz1>2i-13 JB(0,R) | 2| B(0,2/N)

S i 3 1 / £ (a)d -

< e vy (z)dx
oz @I\ 00w

- </B<o,2j+w) 'g<z)d2) ( /. on If(y)ldy>

Using Holder’s inequality and (iii) of Lemma 2.3, we have that for 1 < a <
min{py, p2}

/ BV B @

1—q
2 zer ey ll8ll 2oz wp2y <
< 1 2 147q
~ ZZ (27 H-1N)(d=a)q /B(O7sz) vy *(z)dx

j=11=0
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a4

X / wy P? (z)dx / wy P (z)dx
B(0,29+!N) B(0,R)

- - R LQIIZ 1 1;'1
E E , [ [ — v (z)dx
2d0(1 D\ 27N |B(0,27FIN)| Jpo,2i4in)

=0

1 _(Lg),( )d (B2 y
X | —m—————— wy 7 (x)dx
1B(0,27HN)| Jpo2+1n) °

q

L ~(2) e
—_— w @ X d.r
|B(0,274!N)| Jpo2+in) (=)

AN

<.
—

X
RO\ %
<323 sarian (57w
j=11=0
ﬂ;q
< R Py )
~ \N

For ¢ > 1, by inequality (3.6) and Hoélder’s inequality, we have

1 1
k1 —k )
_ wy 2 (2x — y)
BMLGe@ S ([ wte) ([ SEEE )
b B(0,R) ! B(o,R) |22 — y|(d=e)kz

/ / , .
where k1 = 51 (%) and kg = s (%) . Since 277!N < |z| < 2/N and |y| < R

implies that |2z — y| > 2|z| — y > |z|. Hence, by Minkowski’s inequality and a
change of variables, we obtain

< [ s, g)(iﬂ)lqvfg(x)dx>
|z|>N

1
o0 q
< ( / BM,(/, g)(m)%(m)dac)
=1 21-1IN<|z|<2IN
< i / / wy ™ (y)dy " / %dz E”L)Z-;(.T)dx
o \J2wvepicey \JsoR) 2| >|a| 2] k2
oo 1
_— vl (x)dx
; = (27F1 1N) (/B(o,zizv)

*r %
X (/ wi ™ (y)dy) (/ » wy ™2 (z)dz) .
B(0,R) B(0,27+N)
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Similar to the case for % < q < 1 and by Lemma 2.6, we have

IBM (£, 8)(x) "% (2)de és, o v
|z|>N

Then, for ¢ € (3,1) U (1,00), we have

lim |BM,, ,(f,8)(x)|"vj(x)dz = 0
N—o00 |:E‘>N ’

holds, where f € F and g € G.

It remains to show that the set § is uniformly equicontinuous. It suffices to
verify that for any e € (0,1), if |¢| is sufficiently small and dependent only on
€, then

I1BMg,(f,8)(- +1) = BMg 4 (f,8) () Loqe) < Ce,
holds uniformly for f € F and g € G.

For two fixed points z,t € R? with |t| < 1, without loss of generality, we

may assume that

BM,,(f.g)(x +1t) < BM, ,(f,8)(z) and BM,,(f g)(x) < co.
Thus, for any € € (0, 1), there is a ball By := B(x,r) such that

T [, ) bW~ pldy > (1= BML(f (e

Let By := B(x,r + [t|), we infer that

B 10 ) = bWl ldy < BML(F £)(w +1).

Using inequalities (3.7) and (3.8), we obtain
(1 =€) BM, ,(f.8)(x) — BMg (f,8)(z +1)

(3.7)

(3.8)

< =T [, o)~ Bl — ey
1
- g [, 1M b2z~
< Pt Z XLy e — o)y
|By[' B
! b t)—b 92 d
+ e 1Mo 0 =2z — )y
1
- g [, 1M 0 =W w)le2z — iy
< IV ey BMa (£,8)(0)

d
X B, (y) - XB, (y)
|BilP~%  |Bo|'"d

)
e b(x +1) = b(y)||f (y)llg(22 —y)|dy.

“,
B>
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It follows from Lemma 2.8 and letting e = |¢|, which implies that for any
kE>1and 1< s<min{p,pa2}

|BM,, ,(f,8)(x +t) — BM, ,(f,8)()]
< [H(BMu(f,8)(x) + BMu(f, m208) () + [t 57 (BMas(f°, 8%)(x))
+ BMa(f, 7208 — 8)(2) + [t|BM (. 8) (2).

Hence, by weighted boundedness of B, in [15,16] and Remark 1.3, for any
k>1and 1< s < min{p;,p2}, we have

IBMp,(f,8)(- + 1) = BMg 4 (f,8) ()l Laque)

S [H([BMa(f, g)”Lq(ygj) + | BMo(f, thg)HLq(va) + HBMclv,b(fv g)”Lq(vgj))
IR (B Mas(F, ) @)Y sy + IBMalf, 78 — )l oo

< ([t + 1t

0 =

1
ks’

I zor wrr) 18l o wzzy + L1 Lor upry [ 7268l o2 (p2)
+ 1 fll e (wfl)HT%g - g||Lm(w§2)-

Since g € LP2(wh?), for a given € € (0,1), we can find v = v(e,g) > 0 such that
[t] <~ implies

|28 — g||Lpz(w§2) <€
Finally, by choosing |t| < ¢**', we can get the following desired result
IBMp,(f,8)(- +1) = BMg 4y (f,8) (Ml Loqr) S e

This finishes the proof of BM, ;.
For BM_ ;. This case is similar to prove M_ ; and BMoll,b7 we omit the
details. Thus, we complete the proof of Theorem 1.5. [l
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