• Title/Summary/Keyword: Matrix Computation

Search Result 457, Processing Time 0.031 seconds

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

A New Hybrid Strategy for the Optimization of Xhemical Processing System

  • Cho, In-Ho;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.848-855
    • /
    • 1989
  • By structural comparison of process optimization strategies based on Simultaneous Modular Approach, they can be classified into two groups : the Sequential Module Based Approach and the Two-Tier Approach. The Sequential Module Based Approach needs rigorous models and a set of accurate solutions are guranteed. However, it requires large amount of computation time. In the Two-Tier Approach composed of rigorous and simplified models, optimization calculation uses simplified models, therefore comparatively smaller amount of computation time is required but the obtained solutions may not be accurate. These optimization problems were somewhat improved by the alternate application of the two strategies. In this study, improved optimization strategy is suggested, in which Jacobian Matrix is modified to accomodate the strong points of above mentioned strategies. The results of case study show that this approach is superior to the other strategies.

  • PDF

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.

Analysis of 3D Microwave Oven Using Finite Element Method (전자렌지 캐비티의 전자파 해석)

  • Park, Kweong-Soo;Kim, Gweon-Jib;Shon, Jong-Chull;Kim, Sang-Gweon;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1753-1755
    • /
    • 1996
  • This paper presents an analysis of the 3D microwave oven considering its forming. The results were compared with experimental data. Finite Element Method(FEM) using edge clement is employed for the analysis. For solving the large sparse system matrix equation was solved using the parallelized QMR method. Analysis of the 3d cavity has troublesome difficulties such as spurious solutions, too many memory and long computation time. We overcome this difficulties by using edge clement for spurious solutions and the parallelized QMR method by the aid of Paralle Virtual Machine(PVM) for the memory and computation time.

  • PDF

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

A Study on the Application of Conjugate Gradient Method in Nonlinear Magnetic Field Analysis by FEM. (유한요소법에 의한 비선형 자계 해석에 공액 구배법 적응 연구)

  • 임달호;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 1990
  • This paper is a study on the reduction of computation time in case of nonlinear magnetic field analysis by finite element method and Newton-Raphson method. For the purpose, the nonlinear convergence equation is computed by the conjugate gradient method which is known to be applicable to symmetric positive definite matrix equations only. As the results, we can not prove mathematically that the system Jacobian is positive definite, but when we applied this method, the diverging case did not occur. And the computation time is reduced by 25-55% and 15-45% in comparison with the case of direct and successive over-relaxation method, respectively. Therefore, we proved the utility of conjugate gradient method.

  • PDF

Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method (외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산)

  • Yang, Seung-Yong;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.318-324
    • /
    • 2020
  • In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 II)

  • 문덕홍;최명수;홍승수;강현석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.203-209
    • /
    • 1996
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Aviation stability analysis with coupled system criterion of theoretical solutions

  • C.C. Hung;T. Nguyen
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.221-239
    • /
    • 2023
  • In our research, we have proposed a solid solution for aviation analysis which can ensure the asymptotic stability of coupled nonlinear plants, according to the theoretical solutions and demonstrated method. Because this solution employed the scheme of specific novel theorem of control, the controllers are artificially combined by the parallel distribution computation to have a feasible solution given the random coupled systems with aviation stability analysis. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

An Efficient Computation of Matrix Triple Products (삼중 행렬 곱셈의 효율적 연산)

  • Im, Eun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.141-149
    • /
    • 2006
  • In this paper, we introduce an improved algorithm for computing matrix triple product that commonly arises in primal-dual optimization method. In computing $P=AHA^{t}$, we devise a single pass algorithm that exploits the block diagonal structure of the matrix H. This one-phase scheme requires fewer floating point operations and roughly half the memory of the generic two-phase algorithm, where the product is computed in two steps, computing first $Q=HA^{t}$ and then P=AQ. The one-phase scheme achieved speed-up of 2.04 on Intel Itanium II platform over the two-phase scheme. Based on memory latency and modeled cache miss rates, the performance improvement was evaluated through performance modeling. Our research has impact on performance tuning study of complex sparse matrix operations, while most of the previous work focused on performance tuning of basic operations.

  • PDF