Abstract
One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.