It is not too much to say that problem solving is still the focus of school mathematics though the trend of mathematics education for ten year from the one of 1980 is problem solving and the one of mathematics education for ten year from the one of 1990 is standards and constructivism. There are so many crucial clues or methods in good problem solving but I think that one of them is a representation. So, the purpose of this study is to investigate what is the meaning of representation in general and why representation is so important in elementary mathematics learning, Moreover, I have analyzed the gifted children's thinking of representation which is appeared in the previous internet home task of 40 gifted children who are selected through the examination of 1st, 2nd with paper and pencil and 3rd with practical skill and interview and finally I have presented some examples of children's representation how they use representation to model, investigate and understand special concept more easily in elementary school mathematics class.
In modern theory, creativity is an aim of mathematics education not only for the gifted but also fur the general students. The assertion that we must cultivate the creativity for the gifted students and drill the mechanical activity for the general students are unreasonable. Freudenthal has advocated the reinvention method, a pedagogical principle in mathematics education, which would promote the creativity. In this method, the pupils start with a meaningful context, not ready-made concepts, and invent informative method through which he could arrive at the formative concepts progressively. In many face the reinvention method is contrary to the traditional method. In traditional method, which was named as 'concretization method' by Freudenthal, the pupils start with ready-made concepts, and applicate this concepts to various instances through which he could arrive at the understanding progressively. Freudenthal believed that the mathematical creativity could not be cultivated through the concretization method in which the teacher transmit a ready-made concept to the pupils. In the article, we close examined the reinvention method, and presented a context of delivery route which is a illustration of reinvention method. Through that context, the principle of pascal's triangle is reinvented progressively.
본 연구의 목적은 한 영재교육원의 초등수학영재의 선발 과정과 문항에 대한 심층적 분석을 통해 초등수학영재의 선발 과정에 대한 시사점을 얻고자 하는 것이다. 이를 위하여 1, 2, 3차 선발 시험별로 학생들의 반응을 바탕으로 정답률을 조사하였고, 2, 3차 선발 시험은 오류 유형을 파악하였다. 연구결과에 따르면 대체로 선다형보다는 단답형과 설명을 요구하는 서술형 문항에서 정답률이 낮았다. 그리고 수와 연산, 논리 영역에서의 성취도에 비해 다른 영역에서의 성취도가 상대적으로 낮다는 것을 알 수 있었다. 본 연구의 결과로부터 앞으로 프로젝트 과제나 프로그램과 연계한 영재 선발에 대한 연구가 필요하다는 결론을 얻을 수 있었다.
본 연구의 목적은 초등수학영재와 일반학생 사이의 정서지능과 창의적 성향을 비교분석 함으로써 초등수학영재의 특성을 이해하며, 초등수학영재와 일반학생의 창의성 교육에 도움을 주는 것이다. 연구 대상은 D광역시와 K도에 소재한 초등학교 영재학급의 4, 5, 6학년 학생 102명과 같은 지역 초등학교의 일반학생 132명으로 총 234명이다. 본 연구의 결과는 다음과 같다. 첫째, 초등수학영재와 일반학생의 정서지능의 평균을 비교한 결과, 모든 영역에서 초등수학영재가 일반학생보다 더 높은 정서지능을 보이고 있다. 둘째, 초등수학영재와 일반학생의 창의적 성향을 비교한 결과, 초등수학영재가 일반학생 보다 창의적 성향이 높게 나타났다. 셋째, 초등수학영재와 일반학생의 정서지능과 창의적 성향의 하위 요소 간 상관관계를 분석한 결과, 초등수학영재와 일반학생 두 집단 모두 정서지능과 창의적 성향의 하위요소가 서로 정적인 상관관계를 형성하고 있는 것으로 나타났다. 이것은 초등수학영재와 일반학생 모두 정서지능이 창의적 성향에 영향을 미치며, 이를 통해 창의성을 발현하기 위해서는 정서적인 요소를 반드시 고려해야 한다는 것을 알 수 있었다.
영재들에게는 교과서에서 요구하는 문제 만들기 수준을 넘어 생활 주변에서 경험하는 다양한 수학적 소재들을 창의적으로 재구성해보는 경험이, 영재 지도 교사에게는 그 학생들의 사고를 이해하고 후속적인 지도를 위한 교훈과 반성이 필요하다. 본 연구는 영재학급 학생들에게 문제 만들기 전략 활용 수업의 가능성을 확인하고, What-If-Not 전략을 배우고 난 영재학생들이 루미큐브라는 보드게임을 자신이 알고 있는 수학적인 요소에 맞게 변형해 본 다양한 사례들을 분석한다. 그 결과물을 교육과정의 내용(주제)별로 제시하고 변형 루미큐브 만들기 수업의 교육적 가치와 영재들을 위한 교육적 시사점을 제안하였다.
This study explored the characteristics of elementary gifted students' creative problem-solving skills combining creativity and problem-solving ability based on their work on Fermi estimation problems. The analysis revealed that gifted students exhibited strong logical validity and breadth but showed some weaknesses in divergent thinking abilities (fluency, flexibility, originality).
In this study, we have analysed and compared the cognitive, affective, and emotional aspects of the mathematically gifted, the scientifically gifted, and common middle school students in cognitive, affective, and emotional aspects. The mathematically gifted students are proved to have better continuous/simultaneous information processing, more positive mathematical disposition, more preference to difficult tasks, and higher EQ than the common students do. On another hand, no difference is found between the mathematically gifted and the scientifically gifted students in creative problem solving ability however, the mathematically gifted have more self-confidence, more curiosity for mathematics, stronger will, and more disposition to monitor and reflect, and more efficient self-control than the scientifically gifted do. In short, the mathematically gifted are superior to common students in mostly all aspects, and better than the scientifically gifted in the affective part.
본 연구는 영재 교수 학습 과정에서 초동영재학생들에게 자기주도적 발견식 탐구식 학습을 실시하여 학습의 효과를 높이고, 수학적 원리와 수학의 심미성을 갖는 창의적인 산출물을 생산해 낼 수 있는 교수 학습 모형을 개발하고, 개발한 모형으로 수업을 진행한 후 나타난 특징에 대하여 탐구하였다. 그 결과 다음과 같은 결론을 얻었다. 첫째, 개발된 영재 교수 학습 모형은 초등수학 영재학생들에게 자료를 통찰하는 능력과 분석적 연역적 추론 능력과 같은 수학적 창의성을 발현하게 한다. 둘째, GSP를 활용한 원형 디자인은 초등수학 영재학생들에게 수학적 패턴을 시각적으로 표현함으로써 추상화된 규칙을 인식하는데 도움을 준다. 셋째, 자연수의 연산을 활용한 원형 디자인은 초등수학 영재학생들의 수학에 대한 심미성과 창의성을 발현하는데 긍정적인 영향을 준다.
학습자의 학습 능력 및 발달에 따른 차이는 교육 실제에서 고려되어야 하는 중요한 요소로 인식되는 바, 일반 학생에 비해 특정 영역에서 우수함을 드러내는 영재학생의 인지적, 정의적 요구를 충족시키기 위해 양질의 영재교육 프로그램을 마련하여 운영하는 것은 교육적 진보의 척도로 간주할 만하다. 2000년 영재교육진흥법을 마련한 이래 영재교육에 대한 관심이 증폭된 지 십여 년이 지난 현 시점에서, 본 연구는 미국의 초등 영재교육 프로그램의 한 가지 사례를 검토하고 그로부터 교육적 함의를 얻는 것을 목표로 한다. 자율성과 책무성에 기초한 다양성을 특징으로 하는 미국의 교육 상황에서 영재교육 프로그램의 규준을 고찰하고 그것이 미주리 주 콜롬비아 시 교육청에 의해 어떻게 해석되어 실천되고 있는지, 그 구체적인 사례인 EEE 프로그램의 목표 및 운영 실제에 대해 상세히 검토할 것이다. 특히 수학 프로그램 활동 사례도 포함할 것이다.
G. Cantor gave a deep influence to the society of mathematics in many ways, especially in the set theory. It is important for gifted and talented high school students in mathematics to understand the Euler constant and the fractal dimension of the Cantor set in a heuristic sense. On the historic basis of mathematics and the standard of high school students, we give the teaching method for the talented high school student to understand them better. Further we introduce the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs distribution and its first moment. We hope that from these topics, the gifted and talented students in mathematics will have insight in the analysis of mathematics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.