Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.12
/
pp.1-10
/
2018
The purpose of this study is to analyze the mathematics competencies required in middle school Korean language class to find out ways to improve student's debate ability. The results of the analysis showed that creativity and information processing ability in research activities; problem solving ability, creativity, information processing ability in planning activities; reasoning and creativity, information processing ability in rebutting activities; problem solving and reasoning in summary activities. In cross-inquiry activities, problem solving and reasoning, information processing, and creativity are required; creativity in final focus; problem solving and reasoning ability in judgment and general review; preparation time activities require problem solving, reasoning, and information processing ability. Therefore, in order to improve the debate ability of the students, it is required that the mathematics competencies such as problem solving, reasoning, information processing, and creativity are increased.
This study analyzed the quality of mathematics classes with observations using the instrument, MQI(Mathematical Quality of Instruction). Class recordings and interviews were conducted on 2 pre-service teachers and 4 in-service teachers. This study recorded and analyzed 3 or 4 classes for each mathematics teacher by using revised MQI. There were a total of 8 raters: 2 or 3 raters analyzed each class. MQI has four dimensions: Richness of the Mathematics, Working with Students and Mathematic, Errors and Imprecision, Student Participation in Meaning-Making and Reasoning. In the dimension of 'Richness of Mathematics', all teachers had good scores of 'explanations of teacher' but had lower scores of 'linking and connections', 'multiple procedures or solution methods' and 'developing mathematical generalizations.' In the dimension of 'Working with Students and Mathematics', two in-service teachers who have worked and having more experience had higher scores than others. In the dimension of 'Errors and Imprecision', all teachers had high scores. In the dimension of 'Student Participation in Meaning-Making and Reasoning', two pre-service teachers had contrast and also two in-service teachers who hadn't worked not long had contrast. Implications were deducted from finding to improving quality of mathematics classes.
Problem solving is important in school mathematics as the means and end of mathematics education. In elementary school, inductive reasoning is closely linked to problem solving. The purpose of this study was to examine ways of improving problem solving ability through analysis of inductive reasoning process. After the process of inductive reasoning in problem solving was analyzed, five different stages of inductive reasoning were selected. It's assumed that the flow of inductive reasoning would begin with stage 0 and then go on to the higher stages step by step, and diverse sorts of additional inductive reasoning flow were selected depending on what students would do in case of finding counter examples to a regulation found by them or to their inference. And then a case study was implemented after four elementary school students who were in their sixth grade were selected in order to check the appropriateness of the stages and flows of inductive reasoning selected in this study, and how to teach inductive reasoning and what to teach to improve problem solving ability in terms of questioning and advising, the creation of student-centered class culture and representation were discussed to map out lesson plans. The conclusion of the study and the implications of the conclusion were as follows: First, a change of teacher roles is required in problem-solving education. Teachers should provide students with a wide variety of problem-solving strategies, serve as facilitators of their thinking and give many chances for them ide splore the given problems on their own. And they should be careful entegieto take considerations on the level of each student's understanding, the changes of their thinking during problem-solving process and their response. Second, elementary schools also should provide more intensive education on justification, and one of the best teaching methods will be by taking generic examples. Third, a student-centered classroom should be created to further the class participation of students and encourage them to explore without any restrictions. Fourth, inductive reasoning should be viewed as a crucial means to boost mathematical creativity.
This study analyzed the types of quantitative reasoning and the characteristics of representation in order to figure out the characteristics of quantitative reasoning of the sixth graders. Three students who used quantitative reasoning in solving problems were interviewed in depth. Results showed that the three students used two types of quantitative reasoning, that is difference reasoning and multiplicative reasoning. They used qualitatively different quantitative reasoning, which had a great impact on their problem-solving strategy. Students used symbolic, linguistic and visual representations. Particularly, they used visual representations to represent quantities and relations between quantities included in the problem situation, and to deduce a new relation between quantities. This result implies that visual representation plays a prominent role in quantitative reasoning. This paper included several implications on quantitative reasoning and quantitative approach related to early algebra education.
Journal of Elementary Mathematics Education in Korea
/
v.20
no.1
/
pp.105-129
/
2016
The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.
It is important for children to develop statistical reasoning as they think through data. In particular, it is imperative to provide children instructional situations in which they are encouraged to consider variability in data because the ability to reason about variability is fundamental to the development of statistical reasoning. Many researchers argue that even highperforming mathematics students show low levels of statistical reasoning; interventions attending to pedagogical concerns about child ren's statistical reasoning are, thus, necessary. The purpose of this study was to investigate 15 gifted elementary students' various ways of understanding important statistical concepts, with particular attention given to 3 students' reasoning about data that emerged as they engaged in the process of generating and graphing data. Analysis revealed that in recognizing variability in a context involving data, mathematically gifted students did not show any difference from previous results with general students. The authors suggest that our current statistics education may not help elementary students understand variability in their development of statistical reasoning.
This study is based on the recognition that teacher educators have to focus their attention on developing pre-service teachers' statistical reasoning for statistics education of school mathematics. This paper investigated knowledge on pre-service teachers' statistical reasoning. Statistical Reasoning Assessment (SRA) is performed to find out pre-service teachers' statistical reasoning ability. The research findings are as follows. There was meaningful difference in the statistical area of statistical reasoning ability with significant level of 0.05. This proved that 4 grades pre-service teachers were more improve on statistical reasoning than 2 grades pre-service teachers. Even though most of the pre-service teachers ratiocinated properly on SRA, half of pre-service teachers appreciated that small size of sample is more likely to deviate from the population than the large size of sample. A few pre-service teachers have difficulties in understanding "Correctly interprets probabilities(be able to explain probability by using ratio" and "Understands the importance of large samples(A small sample is more likely to deviate from the population)".
Journal of Elementary Mathematics Education in Korea
/
v.19
no.4
/
pp.457-484
/
2015
This study aims to investigate an approach to teach proportional reasoning in elementary mathematics class by analyzing the proportional strategies the students use to solve the proportional reasoning tasks and their percentages of correct answers. For this research 174 sixth graders are examined. The instrument test consists of various questions types in reference to the previous study; the proportional reasoning tasks are divided into algebraic-geometric, quantitative-qualitative and missing value-comparisons tasks. Comparing the percentages of correct answers according to the task types, the algebraic tasks are higher than the geometric tasks, quantitative tasks are higher than the qualitative tasks, and missing value tasks are higher than the comparisons tasks. As to the strategies that students employed, the percentage of using the informal strategy such as factor strategy and unit rate strategy is relatively higher than that of using the formal strategy, even after learning the cross product strategy. As an insightful approach for teaching proportional reasoning, based on the study results, it is suggested to teach the informal strategy explicitly instead of the informal strategy, reinforce the qualitative reasoning while combining the qualitative with the quantitative reasoning, and balance the various task types in the mathematics classroom.
Analogical reasoning is a mathematically useful way of thinking. By analogy reasoning, students can improve problem solving, inductive reasoning, heuristic methods and creativity. The purpose of this study is to analyze the analogical reasoning of preservice mathematics teachers while constructing quadratic curves defined by eccentricity. To do this, we produced tasks and 28 preservice mathematics teachers solved. The result findings are as follows. First, students could not solve a target problem because of the absence of the mathematical knowledge of the base problem. Second, although student could solve a base problem, students could not solve a target problem because of the absence of the mathematical knowledge of the target problem which corresponded the mathematical knowledge of the base problem. Third, the various solutions of the base problem helped the students solve the target problem. Fourth, students used an algebraic method to construct a quadratic curve. Fifth, the analysis method and potential similarity helped the students solve the target problem.
This study aims to examine pre- and in-service mathematics teachers' reasoning and how they justify their reasoning. For this purpose, we developed a set of mathematical tasks that are based on mathematical contents for middle grade students and conducted the survey to pre- and in-service teachers in Korea. Twenty-five pre-service teachers and 8 in-service teachers participated in the survey. The findings from the data analysis suggested as follows: a) the pre- and in-service mathematics teachers seemed to be very dependent of the manipulation of algebraic expressions so that they attempt to justify only by means of procedures such as known algorithms, rules, facts, etc., rather than trying to find out a mathematical structure in the first instance, b) the proof that teachers produced did not satisfy the generality when they attempted to justify using by other ways than the algebraic manipulation, c) the teachers appeared to rely on using formulas for finding patters and justifying their reasoning, d) a considerable number of the teachers seemed to stay at level 2 in terms of the proof production level, and e) more than 3/4 of the participating teachers appeared to have difficulty in mathematical reasoning and proof production particularly when faced completely new mathematical tasks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.