• Title/Summary/Keyword: Mathematics Education method

Search Result 1,145, Processing Time 0.028 seconds

Exploring the factors of situational interest in learning mathematics (수학 학습에 대한 상황적 흥미 요인 탐색)

  • Park, Joo Hyun;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.555-580
    • /
    • 2021
  • The purpose of this study is to explore the factors of situational interest in math learning, and based on the results, to reveal the factors of situational interest included in teaching and learning methods, teaching and learning activities in mathematics class, and extracurricular activities outside of class. As a result of conducting a questionnaire to high school students, the factors of situational interest in learning mathematics were divided into 10 detail-domain(Enjoy, Curiosity, Competence / Real life, Other subjects, Career / Prior knowledge, Accumulation knowledge / Transformation, Analysis), 4 general-domain(Emotion, Attitude / Knowledge, Understanding), 2 higher-domain(Affective / Cognitive) were extracted. In addition, it was revealed that various factors of situational interest were included teaching and learning methods, teaching and learning activities and extracurricular activities. When examining the meaning of 10 situational interest factors, it can be expected that the factors for developing individual interest are included, so it can be expected to serve as a basis for expanding the study on the development of individual interest in mathematics learning. In addition, in order to maintain individual interest continuously, it is necessary to maintain situational interest by seeking continuous changes in teaching and learning methods in the school field. Therefore, it can be seen that the process of exploring the contextual interest factors included in teacher-centered teaching and learning methods and student-centered teaching and learning activities and extracurricular activities is meaningful.

A Study of Instruction of Internet(IoI)-based Collaborative Learning Method in Elementary School Sixth Grade Mathematics Class (초등학교 6학년 수학수업에서의 수업인터넷 기반 협력학습 수업방법 탐색)

  • Choi, Byoung-Hoon;Yoon, Heon-Chul
    • Journal of Science Education
    • /
    • v.41 no.2
    • /
    • pp.248-266
    • /
    • 2017
  • The purpose of this study is to present various examples of collaborative learning based on the Instruction of Internet in the 6th grade elementary school mathematics class. So we introduce the design method of classroom environment for classroom Internet and give example of various teaching methods. This study was conducted for nine months from March to November, 2016, one sixth grade of elementary school in D area. During this period, we conducted Instruction of Internet-based collaborative learning to classify typical teaching cases. We classified into 5 type collaborative learning. First, collaborative learning in the classroom. Second, remote collaborative learning between classroom and classroom. Third, Live participation classes. Forth, project collaborative learning. Fifth, using virtual reality in collaborative learning. In addition, we could identify that there is a difference compared to the conventional learning. It became possible to conduct collaborative learning with other students simultaneously or have opening class with both parents and teachers by using Youtube. These examples can be presented as a case to depart from traditional mathematics class in one classroom. In this regard, we will be able to provide several implications about teaching methods utilizing smart device and Internet in future classroom.

A Look at the Physics Concept Hierarchy of Pre-service Physics Teacher Through the Knowledge State Analysis Method (지식상태 분석법을 통한 예비 물리교사들의 학년별 물리개념 위계도 분석)

  • Park, Sang-Tae;Byun, Du-Won;Lee, Hee-Bok;Kim, Jun-Tae;Yuk, Keun-Cheol
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.7
    • /
    • pp.746-753
    • /
    • 2005
  • In order to be efficient teachers should understand the current level of leaners through diagnostic evaluation. However, it is arduous to administer a diagnostic examination in every class because of various limitations. This study examined, the major issues arising from the development of a new science diagnostic evaluation system by incorporating the using knowledge state analysis method. The proposed evaluation system was based on the knowledge state analysis method. Knowledge state analysis is a method where by a distinguished collection of knowledge uses the theory of knowledge space. The theory of knowledge space is very advantageous when analyzing knowledge in strong hierarchies like mathematics and science. It helps teaching plan through methodically analyzing a hierarchy viewpoint for students' knowledge structure. The theory can also enhance objective validity as well as support a considerable amount of data fast by using the computer. In addition, student understanding is improved through individualistic feedback. In this study, an evaluation instrument was developed that measured student learning outcome, which is unattainable from the existing method. The instrument was administered to pre-service physics teachers, and the results of student evaluation was analyzed using the theory of knowledge space. Following this, a revised diagnostic evaluation system for facilitating student individualized learning was constructed.

The Effects of the Play with Multiplication Activities Based on Skemp's Theory on Mathematics Achievements and Attitudes towards Mathematics (Skemp 이론에 따른 곱셈 놀이활동이 수학학업성취도 및 수학적 태도에 미치는 효과)

  • Park, Man-Goo;Park, Kyeong-Seon
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.211-230
    • /
    • 2009
  • The purpose of this study was to investigate the effects of using the play with multiplication activities based on Skemp's theory for mathematics achievements and attitudes toward mathematics of elementary school students. For this study, we rearranged Skemp's play activities according to our curriculum in the area of multiplication and applied them to the 2nd grade classes of an elementary school. The plays with multiplication activities were applied to the experimental group while traditional teaching method was used with the current mathematics textbook for the comparative group. We obtained the following conclusions: First, in terms of mathematics achievement, the experimental group who used the plays with multiplication activities based on Skemp's theory didn't show significant difference with the comparative group. Second, it proved that the plays with multiplication activities based on Skemp's theory was more effective for lower level of students than the higher level of students. Third, the plays with multiplication activities based on Skemp's theory have positive effects on improving students' attitudes toward mathematics. We need to use the plays with multiplication activities based on Skemp's theory in the classrooms and find problems with the applying the activities. In addition, we need to develop a more various activities based on Skemp's theory for a better teaching.

  • PDF

An Analysis on the Past Items of Discrete Mathematics in Secondary School Mathematics Teacher Certification Examination (수학과 중등임용 이산수학 기출 문항 분석)

  • Kim, Changil;Jeon, Youngju
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.472-482
    • /
    • 2017
  • In this study, discrete mathematical items were classified into analytical items and mathematical items were analyzed on the basis of analytic framework items of mathematics and the past items of mathematics subject contents of the period 2011-2017 school year. First, the discrete mathematics evaluation areas and evaluation contents proposed by the Korea Institute for Curriculum and Evaluation should be evenly distributed. Second, the items of measuring metacognitive knowledge as a strategic knowledge on the use of cognitive methods should be given. Third, the ratio of the number of items in discrete mathematics to the number of that was 3.8%~6.8%, and the ratio according to the item weighting was 2.2%~6.3%. Fourth, it is analyzed that all the items are suitable for the evaluation goal and the pre-service math teachers who have faithfully implemented the curriculum have maintained the appropriate level of difficulty to solve. Finally, the content items such as the method of counting the discrete mathematics curriculum, the Recurrence Relation, the generation function, and the graph are matched with the teacher certification examination and the mathematics education curriculum of each teachers college. By these reasons, we conclude that the contribution of pre-service teachers to the motivation of learning is obtained and implications.

An analysis of errors in problem solving of the function unit in the first grade highschool (고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석)

  • Mun, Hye-Young;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.277-293
    • /
    • 2011
  • The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.

  • PDF

An Inquiry into Convex Polygons which can be made by Seven Pieces of Square Seven-piece Puzzles (정사각형 칠교판의 일곱 조각으로 만들 수 있는 볼록 다각형의 탐색)

  • Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.221-232
    • /
    • 2007
  • In school mathematics, activities to make particular convex polygons by attaching edgewise some pieces of tangram are introduced. This paper focus on deepening these activities. In this paper, by using Pick's Theorem and 和 草's method, all the convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon(淸少納言)'s tangram, and Pythagoras puzzle are found out respectively. By using Pick's Theorem to the square seven-piece puzzles satisfying conditions of the length of edge, it is showed that the number of convex polygons by attaching edgewise seven pieces of them can not exceed 20. And same result is obtained by generalizing 和 草's method. The number of convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon's tangram, and Pythagoras puzzle are 13, 16, and 12 respectively.

  • PDF

Development of Instructional Materials and Test Items for Students' Spatial Ability (중학교 학생의 공간능력을 위한 학습자료와 문항개발)

  • Jung, In-Chul;ChoiKo, Sang-Sook;Park, Min-Goo
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.71-97
    • /
    • 2009
  • The study was to develop the instruments including instructional materials and test items for enhancing spatial ability. A mixed methodology was chosen to achieve the purpose of the study. To find students' achievement, 5 units of instructional materials were developed through the qualitative method and test items were tested through the quantitative method with 152 of the 8th-graders. The strategies to develop the instructional materials were: firstly to focus on mathematics properties for developing spacial ability; secondly, to allow students to follow hierarchical procedure o[ mathematical properties from 2-d to 3-d; thirdly, to recognize what the manipulative can do and can not; and fourthly, to guide students tn develop the process oriented thought, not the result oriented thought. For the test, 25 items were analyzed to assess students' achievement using validity, difficulty, and discriminator.

  • PDF

Using the Cabri3D Program for Enhancing Problem Solving Ability (문제해결력 신장을 위한 Cabri3D의 교육적 활용)

  • Kim, Nam-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.345-366
    • /
    • 2006
  • In this study, we investigated the methods of using the Cabri3D program for education of problem solving in school mathematics. Cabri3D is the program that can represent 3-dimensional figures and explore these in dynamic method. By using this program, we can see mathematical relations in space or mathematical properties in 3-dimensional figures vidually. We conducted classroom activity exploring Cabri3D with 15 pre-service leachers in 2006. In this process, we collected practical examples that can assist four stages of problem solving. Through the analysis of these examples, we concluded that Cabri3D is useful instrument to enhance problem solving ability and suggested it's educational usage as follows. In the stage of understanding the problem, it can be used to serve visual understanding and intuitive belief on the meaning of the problem, mathematical relations or properties in 3-dimensional figures. In the stage of devising a plan, it can be used to extend students's 2-dimensional thinking to 3-dimensional thinking by analogy. In the stage of carrying out the plan, it can be used to help the process to lead deductive thinking. In the stage of looking back at the work, it can be used to assist the process applying present work's result or method to another problem, checking the work, new problem posing.

  • PDF

The Origin and Instruction of Computational Errors with Zero (0처리 오류의 기원 및 0의 지도)

  • Kim, Soo-Mi
    • School Mathematics
    • /
    • v.8 no.4
    • /
    • pp.397-415
    • /
    • 2006
  • This paper is to find out the reason why students often make mistakes with 0 during computation and to get some instructional implication. For this, history of 0 is reviewed and mathematics textbook and workbook are analyzed. History of 0 tells us that the ancients had almost the same problem with 0 as we have. So we can guess children's problems with 0 have a kind of epistemological obstacles. And textbook analysis tells us that there are some instructional problems with 0 in textbooks: method and time of introducing 0, method of introducing computational algorithms, implicit teaching of the number facts with 0, ignoring the problems which can give rise to errors with 0. Finally, As a reult of analysis of Japanese and German textbooks, three instructional implications are induced:(i) emphasis of role of 0 as a place holder in decimal numeration system (ii) explicit and systematic teaching of the process and product of calculation with 0 (iii) giving practice of problems which can give rise to errors with 0 for prevention of systematical errors with 0.

  • PDF