• Title/Summary/Keyword: Mathematical equation

Search Result 2,594, Processing Time 0.028 seconds

A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF A FUNCTIONAL EQUATION OF DAVISON

  • Jun, Kil-Woung;Jung, Soon-Mo;Lee, Yang-Hi
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.501-511
    • /
    • 2004
  • We prove the Hyers-Ulam-Rassias stability of the Davison functional equation f($\chi$y) + f($\chi$ + y) = f($\chi$y + $\chi$) + f(y) for a class of functions from a ring into a Banach space and we also investigate the Davison equation of Pexider type.

THE STABILITY OF A GENERALIZED CAUCHY FUNCTIONAL EQUATION

  • LEE, EUN HWI;CHOI, YOUNG HO;NA, YOUNG YOON
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We prove the stability of a generalized Cauchy functional equation of the form ; $$f(a_1x+a_2y)=b_1f(x)+b_2f(y)+w.$$ That is, we obtain a partial answer for the open problem which was posed by the Th.M Rassias and J. Tabor on the stability for a generalized functional equation.

  • PDF

GENERALIZED STABILITIES OF CAUCHY'S GAMMA-BETA FUNCTIONAL EQUATION

  • Lee, Eun-Hwi;Han, Soon-Yi
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.567-579
    • /
    • 2008
  • We obtain generalized super stability of Cauchy's gamma-beta functional equation B(x, y) f(x + y) = f(x)f(y), where B(x, y) is the beta function and also generalize the stability in the sense of R. Ger of this equation in the following setting: ${\mid}{\frac{B(x,y)f(x+y)}{f(x)f(y)}}-1{\mid}$ < H(x,y), where H(x,y) is a homogeneous function of dgree p(0 ${\leq}$ p < 1).

STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • Let ℝ be the set of real numbers, f, g : ℝ → ℝ and �� ≥ 0. In this paper, we consider the stability of partially pexiderized exponential-radical functional equation $$f({\sqrt[n]{x^N+y^N}})=f(x)g(y)$$ for all x, y ∈ ℝ, i.e., we investigate the functional inequality $$\|f({\sqrt[n]{x^N+y^N}})-f(x)g(y)\|{\leq}{\epsilon}$$ for all x, y ∈ ℝ.

Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements

  • Selmi, Abdellatif;Ali, Raza
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.315-335
    • /
    • 2023
  • Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

A SHARP RESULT FOR A NONLINEAR LAPLACIAN DIFFERENTIAL EQUATION

  • Choi, Kyeong-Pyo;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.393-402
    • /
    • 2006
  • We investigate relations between multiplicity of solutions and source terms in a elliptic equation. We have a concerne with a sharp result for multiplicity of a nonlinear Laplacian differential equation.

  • PDF