• Title/Summary/Keyword: Mathematical concept & Understanding

Search Result 202, Processing Time 0.025 seconds

A Study on Students' Understanding of Figures through Descriptive Assessments (서술형 평가를 통한 학생들의 도형에 대한 이해 고찰)

  • Choi, Su Im;Kim, Sung Joon
    • East Asian mathematical journal
    • /
    • v.29 no.2
    • /
    • pp.207-239
    • /
    • 2013
  • This research is a study on student's understanding fundamental concepts of mathematical curriculum, especially in geometry domain. The goal of researching is to analyze student's concepts about that domain and get the mathematical teaching methods. We developed various questions of descriptive assessment. Then we set up the term, procedure of research for the understanding student's knowledge of geometric figures. And we analyze the student's understanding extent through investigating questions of descriptive assessment. In this research, we concluded that most of students are having difficulty with defining the fundamental concepts of mathematics, especially in geometry. Almost all the students defined the fundamental conceptions of mathematics obscurely and sometimes even missed indispensable properties. And they can't distinguish between concept definition and concept image. Prior to this study, we couldn't identify this problem. Here are some suggestions. First, take time to reflect on your previous mathematics method. And then compile some well-selected questions of descriptive assessment that tell us more about student's understanding in geometric concepts.

Toward Students' Full Understanding of Trigonometric Ratios

  • Yi, Jung-A;Yoo, Jae-Geun;Lee, Kyeong Hwa
    • Research in Mathematical Education
    • /
    • v.17 no.1
    • /
    • pp.63-78
    • /
    • 2013
  • Trigonometric ratios are difficult concepts to teach and learn in middle school. One of the reasons is that the mathematical terms (sine, cosine, tangent) don't convey the idea literally. This paper deals with the understanding of a concept from the learner's standpoint, and searches the orientation of teaching that make students to have full understanding of trigonometric ratios. Such full understanding contains at least five constructs as follows: skill-algorithm, property-proof, use-application, representation-metaphor, history-culture understanding [Usiskin, Z. (2012). What does it mean to understand some mathematics? In: Proceedings of ICME12, COEX, Seoul Korea; July 8-15,2012 (pp. 502-521). Seoul, Korea: ICME-12]. Despite multi-aspects of understanding, especially, the history-culture aspect is not yet a part of the mathematics class on the trigonometric ratios. In this respect this study investigated the effect of history approach on students' understanding when the history approach focused on the mathematical terms is used to teach the concept of trigonometric ratios in Grade 9 mathematics class. As results, the experimental group obtained help in more full understanding on the trigonometric ratios through such teaching than the control group. This implies that the historical derivation of mathematical terms as well as the context of mathematical concepts should be dealt in the math class for the more full understanding of some mathematical concepts.

The Concept Understanding of Infinity and Infinite Process and Reflective Abstraction (무한 개념이해 수준의 발달과 반성적 추상)

  • 전명남
    • The Mathematical Education
    • /
    • v.42 no.3
    • /
    • pp.303-325
    • /
    • 2003
  • This study sought to provide an explanation of university students' concept understanding on the infinity and infinite process and utilized a psychological constructivist perspective to examine the differences in transitions that students make from static concept of limit to actualized infinity stage in context of problems. Open-ended questions were used to gather data that were used to develop an explanation concerning student understanding. 47 university students answered individually and were asked to solve 16 tasks developed by Petty(1996). Microgenetic method with two cases from the expert-novice perspective were used to develop and substantiate an explanation regarding students' transitions from static concept of limit to actualized infinity stage. The protocols were analyzed to document student conceptions. Cifarelli(1988)'s levels of reflective abstraction and Robert(1982) and Sierpinska(1985)'s three-stage concept development model of infinity and infinite process provided a framework for this explanation. Students who completed a transition to actualized infinity operated higher levels of reflective abstraction than students who was unable to complete such a transition. Developing this ability was found to be critical in achieving about understanding the concept of infinity and infinite process.

  • PDF

A study on understanding of continuity concept of function (함수의 연속 개념 이해에 대한 연구)

  • Oh, Hye-Young
    • East Asian mathematical journal
    • /
    • v.39 no.2
    • /
    • pp.119-139
    • /
    • 2023
  • Most of calculus and real analysis are concerned with the study on continuous functions. Because of self-sustaining concept caused by everyday language, continuity has difficulties. This kind of viewpoint is strengthened with that teacher explains continuity by graph drawn ceaselessly and so finally confused with mathematics concept which is continuity and connection. Thus such a concept image of continuity becomes to include components which create conflicts. Therefore, we try to analyze understanding of continuity on university students by using the concept image as an analytic tool. We survey centering on problems which create conflicts with concept definition and image. And we investigate that difference of definition in continuous function which handles in calculus and analysis exists and so try to present various results on university students' understanding of continuity concept.

Mathematical Cognition as the Construction of Concepts in Kant's Critique of Pure Reason ("순수이성비판"에 나타난 수학적 인식의 특성: 개념의 구성)

  • Yim, Jae-Hoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.

  • PDF

A Study on the Teaching-Learning of Parameter Concept (매개변수 개념의 교수-학습에 관한 연구)

  • 김남희
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.305-325
    • /
    • 2004
  • This study is on the teaching-learning of parameter concept in secondary school mathematics. In our school mathematics curriculum, parameter concept is explicitly presented at high school mathematics textbook. But student have difficulty in understanding parameter concept because this concept is implicitly used in the textbook from 7-grade mathematics. Moreover, it is true that mathematics teacher give a little attention to student's understanding of parameter con- cept. In this study, we analyzed concept definition of parameter and the extension of parameter on the basis of preceding research, our mathematical curriculum, mathematical dictionaries. After that, we concluded that parameter is explicitly called in t where x= f(t), y= g(t) and parameter is implicitly treated in the learning of relation between quantities in our mathematical curriculum. We pointed to the importance of parameter concept in the successful learning of school algebra. Specially, when the level of algebra is in the learning of relation between quantities, parameter is the key concept for understanding and representing of families of equations or functions. In mathematics class, students have opportunity to reflect that what the role of each variable(parameter, dependent variable, independent variable etc.) is, and where the information which determines it comes from. It is for mathematical communications as well as learning school algebra. Therefore, mathematics teacher's didactical attention is more needed to student have a good concept image of parameter before they learn explicitly its concept definition.

  • PDF

Understanding the properties of geometric figures through the linear transformation and its implication for school mathematics (일차변환 관점에서의 도형의 성질 이해 및 학교수학에의 시사점)

  • Hong, Gap-Ju
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.437-445
    • /
    • 2008
  • On the basis of the meaning and general process of geometric proof through transformation concept and understanding the geometric properties of linear transformation, this study showed that the centroid of geometrical figure and certain properties of a parabola and an ellipse in school mathematics can be explained as a conservative properties through linear transformation. From an educational perspective, this is a good example of showing the process of how several existing individual knowledge can be reorganized by a mathematical concept. Considering the fact that mathematical usefulness of linear transformation can be revealed through an invariable and conservation concept, further discussion is necessary on whether the linear transformation map included in the former curriculum have missed its point.

  • PDF

An Investigation of Mathematically High Achieving Students' Understanding of Statistical Concepts (수학 우수아의 통계적 개념 이해도 조사)

  • Lee, Kyeong-Hwa;Yoo, Yun-Joo;Hong, Jin-Kon;Park, Min-Sun;Park, Mi-Mi
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.547-561
    • /
    • 2010
  • Even though statistics is considered as one of the areas of mathematical science in the school curriculum, it has been well documented that statistics has distinct features compared to mathematics. However, there is little empirical educational research showing distinct features of statistics, especially research into the understanding of statistical concepts which are different from other areas in school mathematics. In addition, there is little discussion of a relationship between the ability of mathematical thinking and the ability of understanding statistical concepts. This study extracted some important concepts which consist of the fundamental statistical reasoning and investigated how mathematically high achieving students understood these concepts. As a result, there were both kinds of concepts that mathematically high achieving students developed well or not. There is a weak correlation between mathematical ability and the level of understanding statistical concepts.

  • PDF

A Research on Teacher's Understanding of Infinity (교사의 무한개념 이해도 조사 연구)

  • 박임숙
    • The Mathematical Education
    • /
    • v.39 no.1
    • /
    • pp.37-47
    • /
    • 2000
  • Number concept is basic in mathematics education. But it is very complex and is not easy to understand real number concept, because of its infinity. This study tried to show that what percents of secondary school mathematics teachers in Korea understood the properties of real number, such as cardinality, continuity, relation with real line, and infinity, which were written by verbal language.

  • PDF

A Case Study On the 6th Graders' Understanding of Variables Using LOGO Programming (Logo 프로그래밍을 통한 초등학교 6학년 아동의 변수개념 이해)

  • 류희찬;신혜진
    • Journal of Educational Research in Mathematics
    • /
    • v.10 no.1
    • /
    • pp.85-102
    • /
    • 2000
  • The concept of variables is central to mathematics teaching and learning in junior and senior high school. Understanding the concept provides the basis for the transition from arithmetic to algebra and necessary for the meaningful use of all advanced mathematics. Despite the importance of the concept, however, much has been written in the last decade concerning students' difficulties with the concept. This Thesis is based on research to investigate the hypothesis that LOGO programming will contribute to 6th grader' learning of variables. The aim of the research were to; .investigate practice on pupils' understanding of variables before the activity with a computer; .identify functions of LOGO programming in pupils' using and understanding of variable symbols, variable domain and the relationship between two variable dependent expressions during the activity using a computer; .investigate the influence of pupils' mathematical belief on understanding and using variables. The research consisted predominantly of a case study of 6 pupils' discourse and activities concerning variable during their abnormal lessons and interviews with researcher. The data collected for this study included video recordings of the pupils'work with their spoken language.

  • PDF