• 제목/요약/키워드: Mathematical concept & Understanding

검색결과 202건 처리시간 0.023초

서술형 평가를 통한 학생들의 도형에 대한 이해 고찰 (A Study on Students' Understanding of Figures through Descriptive Assessments)

  • 최수임;김성준
    • East Asian mathematical journal
    • /
    • 제29권2호
    • /
    • pp.207-239
    • /
    • 2013
  • This research is a study on student's understanding fundamental concepts of mathematical curriculum, especially in geometry domain. The goal of researching is to analyze student's concepts about that domain and get the mathematical teaching methods. We developed various questions of descriptive assessment. Then we set up the term, procedure of research for the understanding student's knowledge of geometric figures. And we analyze the student's understanding extent through investigating questions of descriptive assessment. In this research, we concluded that most of students are having difficulty with defining the fundamental concepts of mathematics, especially in geometry. Almost all the students defined the fundamental conceptions of mathematics obscurely and sometimes even missed indispensable properties. And they can't distinguish between concept definition and concept image. Prior to this study, we couldn't identify this problem. Here are some suggestions. First, take time to reflect on your previous mathematics method. And then compile some well-selected questions of descriptive assessment that tell us more about student's understanding in geometric concepts.

Toward Students' Full Understanding of Trigonometric Ratios

  • Yi, Jung-A;Yoo, Jae-Geun;Lee, Kyeong Hwa
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제17권1호
    • /
    • pp.63-78
    • /
    • 2013
  • Trigonometric ratios are difficult concepts to teach and learn in middle school. One of the reasons is that the mathematical terms (sine, cosine, tangent) don't convey the idea literally. This paper deals with the understanding of a concept from the learner's standpoint, and searches the orientation of teaching that make students to have full understanding of trigonometric ratios. Such full understanding contains at least five constructs as follows: skill-algorithm, property-proof, use-application, representation-metaphor, history-culture understanding [Usiskin, Z. (2012). What does it mean to understand some mathematics? In: Proceedings of ICME12, COEX, Seoul Korea; July 8-15,2012 (pp. 502-521). Seoul, Korea: ICME-12]. Despite multi-aspects of understanding, especially, the history-culture aspect is not yet a part of the mathematics class on the trigonometric ratios. In this respect this study investigated the effect of history approach on students' understanding when the history approach focused on the mathematical terms is used to teach the concept of trigonometric ratios in Grade 9 mathematics class. As results, the experimental group obtained help in more full understanding on the trigonometric ratios through such teaching than the control group. This implies that the historical derivation of mathematical terms as well as the context of mathematical concepts should be dealt in the math class for the more full understanding of some mathematical concepts.

무한 개념이해 수준의 발달과 반성적 추상 (The Concept Understanding of Infinity and Infinite Process and Reflective Abstraction)

  • 전명남
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권3호
    • /
    • pp.303-325
    • /
    • 2003
  • This study sought to provide an explanation of university students' concept understanding on the infinity and infinite process and utilized a psychological constructivist perspective to examine the differences in transitions that students make from static concept of limit to actualized infinity stage in context of problems. Open-ended questions were used to gather data that were used to develop an explanation concerning student understanding. 47 university students answered individually and were asked to solve 16 tasks developed by Petty(1996). Microgenetic method with two cases from the expert-novice perspective were used to develop and substantiate an explanation regarding students' transitions from static concept of limit to actualized infinity stage. The protocols were analyzed to document student conceptions. Cifarelli(1988)'s levels of reflective abstraction and Robert(1982) and Sierpinska(1985)'s three-stage concept development model of infinity and infinite process provided a framework for this explanation. Students who completed a transition to actualized infinity operated higher levels of reflective abstraction than students who was unable to complete such a transition. Developing this ability was found to be critical in achieving about understanding the concept of infinity and infinite process.

  • PDF

함수의 연속 개념 이해에 대한 연구 (A study on understanding of continuity concept of function)

  • 오혜영
    • East Asian mathematical journal
    • /
    • 제39권2호
    • /
    • pp.119-139
    • /
    • 2023
  • Most of calculus and real analysis are concerned with the study on continuous functions. Because of self-sustaining concept caused by everyday language, continuity has difficulties. This kind of viewpoint is strengthened with that teacher explains continuity by graph drawn ceaselessly and so finally confused with mathematics concept which is continuity and connection. Thus such a concept image of continuity becomes to include components which create conflicts. Therefore, we try to analyze understanding of continuity on university students by using the concept image as an analytic tool. We survey centering on problems which create conflicts with concept definition and image. And we investigate that difference of definition in continuous function which handles in calculus and analysis exists and so try to present various results on university students' understanding of continuity concept.

"순수이성비판"에 나타난 수학적 인식의 특성: 개념의 구성 (Mathematical Cognition as the Construction of Concepts in Kant's Critique of Pure Reason)

  • 임재훈
    • 한국초등수학교육학회지
    • /
    • 제16권1호
    • /
    • pp.1-19
    • /
    • 2012
  • 칸트는 "순수이성비판"에서 수학적 인식과 철학적 인식의 차이를 개념에 의한 인식과 개념의 구성에 의한 인식의 차이로 설명한다. 이 논문에서는 칸트가 주장한 수학적 인식의 특성인 '개념의 구성'의 의미를 "순수이성비판"에 나타난 감성과 지성에 관한 칸트의 이론을 바탕으로 고찰한다. 개념의 구성은 개념을 직관에 나타내는 것으로, 상상력의 종합에 의해 개념의 역동적인 도식을 형성하는 과정이다. 개념의 구성에 관한 칸트의 이론은 수학적 개념 학습 지도에서 경험에서의 추상화를 통한 개념 형성을 넘어 주어진 표상을 개념의 도식으로 보는 관점의 형성을 요청하는 것으로 해석될 수 있다.

  • PDF

매개변수 개념의 교수-학습에 관한 연구 (A Study on the Teaching-Learning of Parameter Concept)

  • 김남희
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권3호
    • /
    • pp.305-325
    • /
    • 2004
  • 본 논문은 학교수학에서 다루어지고 있는 매개변수 개념의 교수-학습에 관한 논의이다. 우리나라 수학교과서에서 매개변수 개념은 중학교 수준의 학습내용과 관련된 대수적 표현에서 자주 다루어지고 있음에도 불구하고 그 개념에 대한 용어 정의는 고등학교 선택교육과정 교과서에서 비로소 도입되고 있기 때문에 매개변수개념 이해를 위한 수학교사의 교수학적 노력이 요망된다. 본 논문에서는 학교현장에서 매개변수 개념의 지도를 위한 교수학적 시사점을 이끌어 내기 위해 매개변수의 개념 정의를 분석하고 우리나라 수학과 교육과정상에서 매개변수가 도입되는 맥락을 외국의 사례와 비교해서 검토한다. 또한 선행연구를 통해 대수학습의 관점에서 매개변수 개념 이해의 중요성을 확인하고 매개변수 개념이 학교수학에서 의미 있게 다루어져야 할 학습맥락에 대해 논의해 본다. 마지막으로 본 논문의 연구내용을 종합하여 매개변수 개념의 교수-학습을 위한 시사점을 요약하여 제시한다.

  • PDF

일차변환 관점에서의 도형의 성질 이해 및 학교수학에의 시사점 (Understanding the properties of geometric figures through the linear transformation and its implication for school mathematics)

  • 홍갑주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권4호
    • /
    • pp.437-445
    • /
    • 2008
  • On the basis of the meaning and general process of geometric proof through transformation concept and understanding the geometric properties of linear transformation, this study showed that the centroid of geometrical figure and certain properties of a parabola and an ellipse in school mathematics can be explained as a conservative properties through linear transformation. From an educational perspective, this is a good example of showing the process of how several existing individual knowledge can be reorganized by a mathematical concept. Considering the fact that mathematical usefulness of linear transformation can be revealed through an invariable and conservation concept, further discussion is necessary on whether the linear transformation map included in the former curriculum have missed its point.

  • PDF

수학 우수아의 통계적 개념 이해도 조사 (An Investigation of Mathematically High Achieving Students' Understanding of Statistical Concepts)

  • 이경화;유연주;홍진곤;박민선;박미미
    • 대한수학교육학회지:학교수학
    • /
    • 제12권4호
    • /
    • pp.547-561
    • /
    • 2010
  • 통계학은 학교수학의 일부분으로 포함되어 있지만 전통적인 수학과는 본질적으로 다른 점을 많이 가지고 있다는 연구결과가 보고되어 왔다. 그러나 통계 고유의 특징에 대한 교육 연구, 특히 학교수학의 다른 영역과 차별되는 통계적 개념 이해에 대한 실증적인 자료와 논의가 매우 부족하다. 그러므로 수학적 사고 능력과 통계적 개념 이해 능력이나 통계적 사고 능력 사이의 관계에 대한 논의가 거의 이루어지지 않았다. 이 연구에서는 통계적 사고의 근간을 이루는 몇 가지 핵심 개념들을 추출한 후, 수학적으로 우수한 능력을 갖춘 학생들이 이 통계적 개념들을 이해하는 정도를 조사하였다. 조사 결과, 수학적으로 우수한 능력을 갖춘 학생들이 자연스럽게 발달시킨 개념과 발달시키지 못한 개념이 있었다. 수학적 능력과 통계적 개념 이해 수준 사이에는 낮은 상관관계가 나타났다.

  • PDF

교사의 무한개념 이해도 조사 연구 (A Research on Teacher's Understanding of Infinity)

  • 박임숙
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제39권1호
    • /
    • pp.37-47
    • /
    • 2000
  • Number concept is basic in mathematics education. But it is very complex and is not easy to understand real number concept, because of its infinity. This study tried to show that what percents of secondary school mathematics teachers in Korea understood the properties of real number, such as cardinality, continuity, relation with real line, and infinity, which were written by verbal language.

  • PDF

Logo 프로그래밍을 통한 초등학교 6학년 아동의 변수개념 이해 (A Case Study On the 6th Graders' Understanding of Variables Using LOGO Programming)

  • 류희찬;신혜진
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제10권1호
    • /
    • pp.85-102
    • /
    • 2000
  • The concept of variables is central to mathematics teaching and learning in junior and senior high school. Understanding the concept provides the basis for the transition from arithmetic to algebra and necessary for the meaningful use of all advanced mathematics. Despite the importance of the concept, however, much has been written in the last decade concerning students' difficulties with the concept. This Thesis is based on research to investigate the hypothesis that LOGO programming will contribute to 6th grader' learning of variables. The aim of the research were to; .investigate practice on pupils' understanding of variables before the activity with a computer; .identify functions of LOGO programming in pupils' using and understanding of variable symbols, variable domain and the relationship between two variable dependent expressions during the activity using a computer; .investigate the influence of pupils' mathematical belief on understanding and using variables. The research consisted predominantly of a case study of 6 pupils' discourse and activities concerning variable during their abnormal lessons and interviews with researcher. The data collected for this study included video recordings of the pupils'work with their spoken language.

  • PDF