• Title/Summary/Keyword: Mathematical Uniqueness

Search Result 424, Processing Time 0.019 seconds

AN ENTIRE FUNCTION SHARING A POLYNOMIAL WITH LINEAR DIFFERENTIAL POLYNOMIALS

  • Ghosh, Goutam Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.495-505
    • /
    • 2018
  • The uniqueness problems on entire functions sharing at least two values with their derivatives or linear differential polynomials have been studied and many results on this topic have been obtained. In this paper, we study an entire function f(z) that shares a nonzero polynomial a(z) with $f^{(1)}(z)$, together with its linear differential polynomials of the form: $L=L(f)=a_1(z)f^{(1)}(z)+a_2(z)f^{(2)}(z)+{\cdots}+a_n(z)f^{(n)}(z)$, where the coefficients $a_k(z)(k=1,2,{\ldots},n)$ are rational functions and $a_n(z){\not{\equiv}}0$.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

  • Qi, Xiao-Guang;Yang, Lian-Zhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.731-745
    • /
    • 2013
  • In this paper, we investigate uniqueness problems of certain types of $q$-difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where $q$-differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function $f$ and a non-zero complex constant $q$, $E(S_j,f)=E(S_j,{\Delta}_qf)$ for $j=1,2$ imply $f(z)=t{\Delta}_qf$, where $t^n=1$. This gives a partial answer to a question of Gross concerning a zero order meromorphic function $f(z)$ and $t{\Delta}_qf$.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.

UNIQUENESS RESULTS FOR THE NONLINEAR HYPERBOLIC SYSTEM WITH JUMPING NONLINEARITY

  • Jung, Tack-Sung;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.723-732
    • /
    • 2007
  • We investigate the existence of solutions u(x, t) for a perturbation b[$(\xi+\eta+1)^+-1$] of the hyperbolic system with Dirichlet boundary condition (0.1) = $L\xi-{\mu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$, $L\eta={\nu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$ where $u^+$ = max{u,0}, ${\mu},\nu$ are nonzero constants. Here $\xi,\eta$ are periodic functions.

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

ON BI-POINTWISE CONTROL OF A WAVE EQUATION AND ALGORITHM

  • Kim, Hong-Chul;Lee, Young-Il
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.739-763
    • /
    • 2000
  • We are concerned with mathematical analysis related to the bi-pointwise control for a mixed type of wave equation. In particular, we are interested in the systematic build-up of the bi-pointwise control actuators;one at the boundary and the other at the interior point simultaneously. The main purpose is to examine Hilbert Uniqueness Method for the setting of bi-pointwise control actuators and to establish relevant algorithm based on our analysis. After discussing the weak solution for the state equation, we investigate bi-pointwise control mechanism and relevant mathematical analysis based on HUM. We then proceed to set up an algorithm based on the conjugate gradient method to establish bi-pointwise control actuators to halt the system.

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH EQUATION WITH A DEVIATING ARGUMENT

  • Zhou, Qiyuan;Xiao, Bing;Yu, Yuehua;Liu, Bingwen;Huang, Lihong
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.673-682
    • /
    • 2007
  • In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for a kind of Rayleigh equation with a deviating argument of the form $x'+f(x'(t))+g(t,\;x(t-\tau(t)))=p(t)$.

THE BRÜCK CONJECTURE AND ENTIRE FUNCTIONS SHARING POLYNOMIALS WITH THEIR κ-TH DERIVATIVES

  • Lu, Feng;Yi, Hongxun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.499-512
    • /
    • 2011
  • The purpose of this paper is twofold. The first is to establish a uniqueness theorem for entire function sharing two polynomials with its ${\kappa}$-th derivative, by using the theory of normal families. Meanwhile, the theorem generalizes some related results of Rubel and Yang and of Li and Yi. Several examples are provided to show the conditions are necessary. The second is to generalize the Br$\"{u}$-ck conjecture with the idea of sharing polynomial.