References
- R. Bruck, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24. https://doi.org/10.1007/BF03322176
- Z. X. Chen and K. H. Shon, On conjecture of R. Bruck concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math. 8 (2004), no. 2, 235-244. https://doi.org/10.11650/twjm/1500407625
- G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl. 223 (1998), no. 1, 88-95. https://doi.org/10.1006/jmaa.1998.5959
- J. Grahl and C. Meng, Entire functions sharing a polynomial with their derivatives and normal families, Analysis (Munich) 28 (2008), no. 1, 51-61.
- W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- X. J. Liu, S. Nevo, and X. C. Pang, On the kth derivative of meromorphic functions with zeros of multiplicity at least k+1, J. Math. Anal. Appl. 348 (2008), no. 1, 516-529. https://doi.org/10.1016/j.jmaa.2008.07.019
- F. Lu, J. F. Xu, and A. Chen, Entire functions sharing polynomials with their first derivatives, Arch. Math. (Basel) 92 (2009), no. 6, 593-601. https://doi.org/10.1007/s00013-009-3075-8
- J. T. Li and H. X. Yi, Normal families and uniqueness of entire functions and their derivatives, Arch. Math. (Basel) 87 (2006), no. 1, 52-59. https://doi.org/10.1007/s00013-005-1619-0
- X. M. Li and C. C. Gao, Entire functions sharing one polynomial with their derivatives, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 1, 13-26. https://doi.org/10.1007/s12044-008-0002-z
- E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), no. 2-4, 195-206. https://doi.org/10.1007/BF01303627
- L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), pp. 101-103. Lecture Notes in Math., Vol. 599, Springer, Berlin, 1977. https://doi.org/10.1007/BFb0096830
- J. Wang and H. X. Yi, The uniqueness of entire functions that share a small function with its differential polynomials, Indian J. Pure Appl. Math. 35 (2004), no. 9, 1119-1129.
- C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
- L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solutions of a Fermat type functional equation, Aequationes Math. 76 (2008), no. 1-2, 140-150. https://doi.org/10.1007/s00010-007-2913-7
- L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813-817. https://doi.org/10.2307/2319796
- J. L. Zhang, Researches on Bruck Conjecture and Fermat Diophantine Equations over function fields, Doctoral Dissertation (2008), 16-18.
- J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Bruck concerning meromorphic functions sharing one small function with their derivatives, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 141-149.
- J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 1, 249-260.
Cited by
- ON THE TRANSCENDENTAL ENTIRE SOLUTIONS OF A CLASS OF DIFFERENTIAL EQUATIONS vol.51, pp.5, 2014, https://doi.org/10.4134/BKMS.2014.51.5.1281
- A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG vol.53, pp.2, 2016, https://doi.org/10.4134/BKMS.2016.53.2.411
- th Derivatives vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/1298343