The Purpose of this study is to develop and implement an alternative secondary mathematics curriculum to enhance creative problem-solving abilities. The curriculum consisting of three main elements-content knowledge, process knowledge and creative thinking sills-as developed. Lessons were taught by a problem-based-learning method in an experimental group. In order to examine the effect of the curriculum, performance assessment was developed and used for pre and post.. There were significant group differences in the creative problem-solving abilities, so we could examine the effect of developed program and confirm the group differences in the attitude for lessons. But there were no significant group differences in motive for learning, a study skill and the achievement test.
This study reports pre-service teachers' problem solving process on the problem-based learning(PBL) employed in an elementary mathematics method course. The subjects were 6 pre-service teachers(students). The data were collected from classroom observation. The research results were described by problem solving stages. In understanding the problem stage, students identified what problem stand for and made a problem solving planned sheet. In curriculum investigation stage, students went through investigation and re-investigation process for solving the task. In problem solving stage, students selected the best strategy for solving the task and presented and shared about problem solving results.
Inventive mathematical thinking, original mathematical problem solving ability, mathematical invention and so on are core concepts, which must be emphasized in all branches of mathematical education. In particular, Polya(1981) insisted that inventive thinking must be emphasized in a suitable level of university mathematical courses. In this paper, the author considered two cases of inventive problem solving ability shown by his many students via real analysis courses. The first case is about the proof of the problem "what is the derived set of the integers Z?" Nearly all books on mathematical analysis sent the question without the proof but some books said that the answer is "empty". Only one book written by Noh, Y. S.(2006) showed the proof by using the definition of accumulation points. But the proof process has some mistakes. But our student Kang, D. S. showed the perfect proof by using The Completeness Axiom, which is very useful in mathematical analysis. The second case is to show the infinite countability of NxN, which is shown by informal proof in many mathematical analysis books with formal proofs. Some students who argued the informal proof as an unreasonable proof were asked to join with us in finding the one-to-one correspondences between NxN and N. Many students worked hard and find two singled-valued mappings and one set-valued mapping covering eight diagrams in the paper. The problems are not easy and the proofs are a little complicated. All the proofs shown in this paper are original and right, so the proofs are deserving of inventive mathematical thoughts, original mathematical problem solving abilities and mathematical inventions. From the inventive proofs of his students, the author confirmed that any students can develope their mathematical abilities by their professors' encouragements.
This study analyzed the learning components of the web-based adaptive math learning programs in order to develop adaptive math learning program using artificial intelligence. The components of the web-based adaptive math learning program set for analysis are classified into learning process presentation, concept learning, problem presentation, problem solving process, and learning result processing then analyzed three programs. As a result of analysis, the typical characteristic of components is that it uses a method of repeatedly presenting the same type of problem in order to learn one concept.
Journal of Elementary Mathematics Education in Korea
/
v.10
no.2
/
pp.195-219
/
2006
This study was proposed to analyze mathematical communication activity and mathematical attitudes while students were solving project problem and to consider how the conclusions effects mathematics education. This study analyzed through qualitative research method. The questions for this study are following, First, how does the process of the mathematical communication activity proceed during solving project problem in a small group? Second, what reactions can be shown on mathematical attitudes during solving project problem in a small group? Four project problems sampled from pilot study in order to examine these questions were applied on two small groups consisting of four 5th grade students. It was recorded while each group was finding out the solution of the given problems. Afterward, consequences were analyzed according to each question after all contents were noted. Consequently, conclusions can be derived as follows. First, it was shown that each student used different elements of contents in mathematical communication activity. Second, during mathematical communication activity, most students preferred common languages to mathematical ones. Third, it was found that each student has their own mathematical attitude. Fourth, Students were more interested in the game project problem and the practical using project problem than others.
The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.
Kim, Min-Kyeong;Lee, Ji-Young;Hong, Jee-Yun;Joo, Hyun-Jung
Communications of Mathematical Education
/
v.26
no.2
/
pp.221-249
/
2012
The purpose of this study is to investigate students decision-making progress through ill-structured problem solving process. For this study, 25 fifth graders in an elementary school were observed by applying ABCDE model (Analyze - Browse - Create - Decision making - Evaluate), and analyzed their decision-making progress analyzing framework which follows 3 steps - making their own decision, discussing/revising with peers, and lastly decision making/solving problem. Upper two groups with better performance in ill-structured problem solving model among 6 groups showed active discussion in group and decision making process with 3 steps (making their own decision, discussing/revising with peers). Even though their decisions are not good-fit to mathematical reasoning result, development and application of ill-structured problems would bring better ability of high level thinking and problem solving to students.
The purpose of this study is to investigate how the curriculum, in which pre-service teachers experience mathematical process and develop assessment items and standards through the process experience in a mathematical essay course, affects the pre-service teachers and suggest its implications for teacher education. Fourty nine pre-service teachers, registered at a mathematical essay course in a K university in Seoul, developed mathematical essay problems and their assessment standards, and their developed processes were analyzed. According to the analysis results, first, mathematical essay problems developed by the fifty students reflect components of mathematical processes. Especially, one characteristic in revising assessment items shows that pre-service teachers considered not only justification process through different levels of difficulty and mathematical reasoning, but also logical descriptions through problem solving, when they worked on group discussions and examined middle school and high school students' responses. Second, while pre-service teachers developed rubrics for their assessment items and revised the rubrics based on students' responses, they established assessment standards which employed mathematical process by focusing on problem solving process rather than results and considering students' unexpected problem solving. The results imply a concrete method in planning and executing a mathematical essay course which makes use of mathematical process in teacher education.
Problem Solving has been emphasized for recent decades, and many research case studies have been used to improve students' Problem Solving abilities. However, the gap of students' abilities can be easily shown after enrollment into school in spite of scholar's attempt to reduce students' level of differentiation. Besides, it is clear that teachers have been too readily assisting students' and not allowing them to acquire the process of Problem Solving, and this may be due to impatience. Therefore, students seem to show signs of the dependent tendency towards teachers and other materials. This tendency easily allows students' to depend on teaching resources without attempting any developmental mechanism of Problem Solving. The presupposition of this study is that every student must solve a problem without any assistance, and also this study is to provide new cognitive strategies for both teachers and students who want to solve their problems by themselves through the process of visible Problem Solving. After applying the student-based problem-solving model by this study, it was found to be effective. Therefore this will lead to the improvement of the Problem Solving and knowledge acquisition of students.
This study analyzed the productive struggles experienced by the sixth-grade elementary school students when productively overcoming the struggles they encountered during mathematical problem-solving. By analyzing their processes of solving multi-strategic and open-ended problems, productive struggles were categorized according to two steps of problem-solving. Additionally, we examined the factors that support students in overcoming these struggles, distinguishing between individual, peer, and teacher influences. The study identifies four types of productive struggles during the problem-understanding step and six during the plan devising and carrying-out step. In the problem-understanding step, the most prevalent type involved overcoming difficulties to grasp the elements and conditions of the problem, while in the plan devising and carrying-out step, persistence in problem-solving was the most common. The factors supporting productive struggles were ranked in order of influence: individual, peer, and teacher support. Teacher support played a significant role during the problem-understanding step, whereas individual and peer supports were more influential during the plan devising and carrying-out step. Based on these findings, the study offers some didactical implications for understanding the characteristics of productive struggles and strategies for effectively supporting students through the problem-solving process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.