• 제목/요약/키워드: Mathematical Problem Solving Process

Search Result 349, Processing Time 0.029 seconds

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

Guided Reinvention of Euler Algorithm: -An Analysis of Progressive Mathematization in RME-Based Differential Equations Course- (오일러 알고리즘의 안내된 재 발명 -RME 기반 미분 방정식 수업에서 점진적 수학화 과정 분석-)

  • 권오남;주미경;김영신
    • The Mathematical Education
    • /
    • v.42 no.3
    • /
    • pp.387-402
    • /
    • 2003
  • Realistic Mathematics Education (RME) focuses on guided reinvention through which students explore experientially realistic context problems to develop informal problem solving strategies and solutions. This research applied this philosophy of RME to design a differential equation course at a university level. In particular, the course encouraged the students of the course to use numerical methods to solve differential equations. In this context, the purpose of this research was to describe the developmental process in which the students constructed and reinvented Euler algorithm in the class. For the purpose, this paper will present the didactical principle of RME and describe the process of developmental research to investigate the inferential process of students in solving the first order differential equation numerically. Finally, the qualitative analysis of the students' reasoning and use of symbols reveals how the students reinvent Euler algorithm under the didactical principle of guided reinvention. In this research, it has been found that the students developed deep understanding of Euler algorithm in the class. Moreover, it has been shown that the experience of doing mathematics in the course had a positive impact on students' mathematical belief and attitude. These findings imply that the didactical principle of RME can be applied to design university mathematical courses and in general, provide a perspective on how to reform mathematics curriculum at a university level.

  • PDF

A Few Problems for the Intellectual Development of Students in High Schools and Community Colleges

  • Mulyukov, Rustem
    • Research in Mathematical Education
    • /
    • v.14 no.3
    • /
    • pp.211-218
    • /
    • 2010
  • It is a truism that mathematics is about relations (cf. [Halford, G. S. (1999). The properties of representations used in higher cognitive processes: Developmental implications. In: Sigel, I. E. (Ed.), The Development of Mental Representation: Theories and Applications (pp. 147-168). Mahwah, New Jersey: Erlbaum]). In this article we are considering few problems related to the Viviani's and Routh's Theorems. All Problems are connected by the relation which exists between the distances of the point inside the triangle to it sides. We show how reasoning about the relations could lead the student's problem solving process and give easy to understand solutions of the problems. Among the problems being considered are the proof of the Converse to Viviani's Theorem, the formulas for areas of all figures formed by the sides of triangle and its cevians.

Analysis for the influence of cooperative learning in small-group on children's mathematics learning (소집단 협력 학습이 아동의 수학 학습에 미치는 영향 분석)

  • 이명희;박영희
    • The Mathematical Education
    • /
    • v.43 no.1
    • /
    • pp.51-74
    • /
    • 2004
  • During cooperative learning in small group, we investigate what characteristics children in elementary school show at several fields of mathematics and through communicating activity etc., what influence the cooperative learning does on children's attitude, thinking, problem solving, recognition. To know them, we observe the process of children's communication and evaluate children's attitude, thinking, problem solving, recognition with checklist at each lesson. Through this research, we conclude that the figure part is the most effective when we teach with cooperative learning type, and the cooperative learning evoke the vivid communication, and make progress in affirmative attitude, thinking etc. Also, in this thesis we suggest the points which teacher should consider when he/she use cooperative learning in small-group.

  • PDF

The Analysis of Relationship between Error Types of Word Problems and Problem Solving Process in Algebra (대수 문장제의 오류 유형과 문제 해결의 관련성 분석)

  • Kim, Jin-Ho;Kim, Kyung-Mi;Kwean, Hyuk-Jin
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.599-624
    • /
    • 2009
  • The purpose of this study was to investigate the relationship between error types and Polya's problem solving process. For doing this, we selected 106 sophomore students in a middle school and gave them algebra word problem test. With this test, we analyzed the students' error types in solving algebra word problems. First, We analyzed students' errors in solving algebra word problems into the following six error types. The result showed that the rate of student's errors in each type is as follows: "misinterpreted language"(39.7%), "distorted theorem or solution"(38.2%), "technical error"(11.8%), "unverified solution"(7.4%), "misused data"(2.9%) and "logically invalid inference"(0%). Therefore, we found that the most of student's errors occur in "misinterpreted language" and "distorted theorem or solution" types. According to the analysis of the relationship between students' error types and Polya's problem-solving process, we found that students who made errors of "misinterpreted language" and "distorted theorem or solution" types had some problems in the stage of "understanding", "planning" and "looking back". Also those who made errors of "unverified solution" type showed some problems in "planing" and "looking back" steps. Finally, errors of "misused data" and "technical error" types were related in "carrying out" and "looking back" steps, respectively.

  • PDF

A Study on Students' Responses to Non-routine Problems Using Numerals or Figures (숫자 또는 도형을 사용하여 제시된 비정형적인 문제에서 학생들의 반응에 대한 연구)

  • Hwang, Sun-Wook;Shim, Sang-Kil
    • The Mathematical Education
    • /
    • v.49 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • The purpose of this article is to study students' responses to non-routine problems which are presented by using solely numerals or symbolic figures. Such figures have no mathematical meaning but just symbolical meaning. Most students understand geometric figures more concrete objects than numerals because geometric figures such as circles and squares can be visualized by the manipulatives in real life. And since students need not consider (unvisible) any operational structure of numerals when they deal with (visible) figures, problems proposed using figures are considered relatively easier to them than those proposed using numerals. Under this assumption, we analyze students' problem solving processes of numeral problems and figural problems, and then find out when students' difficulties arise in the problem solving process and how they response when they feel difficulties. From this experiment, we will suggest several comments which would be considered in the development and application of both numerical and figural problems.

A DEEP LEARNING ALGORITHM FOR OPTIMAL INVESTMENT STRATEGIES UNDER MERTON'S FRAMEWORK

  • Gim, Daeyung;Park, Hyungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.311-335
    • /
    • 2022
  • This paper treats Merton's classical portfolio optimization problem for a market participant who invests in safe assets and risky assets to maximize the expected utility. When the state process is a d-dimensional Markov diffusion, this problem is transformed into a problem of solving a Hamilton-Jacobi-Bellman (HJB) equation. The main purpose of this paper is to solve this HJB equation by a deep learning algorithm: the deep Galerkin method, first suggested by J. Sirignano and K. Spiliopoulos. We then apply the algorithm to get the solution to the HJB equation and compare with the result from the finite difference method.

A Study on Meaning in Solving of Mathematical Modeling Problem (수학적 모델링문제 해결에서의 의미에 관한 연구)

  • Kim, Chang Su
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.561-582
    • /
    • 2013
  • Meanwhile, the meaning has been emphasized in mathematics. But the meaning of meaning had not been clearly defined and the meaning classification had not been reported. In this respect, the meaning was classified as expressive and cognitive. Furthermore, it was reclassified as mathematical situation and real situation. Based on this classification, we investigated how student recognizes the meaning when solving mathematical modeling problem. As a result, we found that the understanding of cognitive meaning in real situation is more difficult than that of the other meaning. And we knew that understanding the meaning in solving of equation, has more difficulty than in expression of equation. Thus, to help students understanding the meaning in the whole process of mathematical modeling, we have to connect real situation with mathematical situation. And this teaching method through unit and measurement, will be an alternative method for connecting real situation and mathematical situation.

  • PDF

Investigation on the Instructional Content based on Problem Based Learning by the Subject of the theories of Mathematics Education in College (문제 중심 학습(PBL)에 기반한 수업 지도 내용 탐색 -대학에서의 수학교육 관련 이론을 대상으로-)

  • Hwang, Hye Jeang
    • East Asian mathematical journal
    • /
    • v.36 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • Problem Based learning(PBL) is a teaching and learning method to increase mathematical ability and help achieving mathematical concepts and principles through problem solving using the learner's mathematical prerequisite knowledge. In addition, the recent instructional situations or environments have focused on the learner's self construction of his learning and its process. In spite of such a quite attention, it is not easy to apply and execute PBL program actually in class. Especially, there are some difficulties in actually applying and practicing PBL in the areas of mathematics education in not only secondary school but also in college. Its reason is that in order to conduct PBL instruction constantly in real or experimental class there is no more concrete and detailed instructional content during the consistent and long period. However, to whom is related to mathematics education including instructors called scaffolders, investigation and recognition on the degree of the learner's acquisition of mathematical thinking skills and strategies is an very important work. By the reason, in this study, the instructional content was to be explored and developed to be conducted during 15 weeks in one semester, which was based on Problem Based Learning environment by the subject of the theories relevant to mathematics education in the college of education.

A Case Study on the Development of Descriptive Problems in Grade 4 Mathematics (수학과 서술형 평가의 문항개발 사례 연구 - 4-나 단계를 중심으로 -)

  • Hong, Jee-Yun;Kim, Min-Kyeong;Noh, Sun-Sook;Kwon, Jum-Rye
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.3
    • /
    • pp.335-352
    • /
    • 2008
  • The purpose of this research was to investigate the descriptive evaluation method that focuses on the problem solving process of the student. The goal was to evaluate the students' understanding of the subject rather than the students' ability to find the final answer. The descriptive evaluation is being suggested as a way of examining the thought process of the student by performing a structured analysis of the problem solving process. Today, there are not enough descriptive evaluation resources available for teachers to effectively carry out this alternative assessment method in the elementary school mathematics curriculum. This research is a case study on the development of resources for descriptive evaluation in grade 4 mathematics. We designed the development process for descriptive evaluation and its rubric for all 8 units of the 4-Na level of mathematics in the elementary school curriculum. Three descriptive problems were developed for each of the 8 units for a total of 24 problems. The rubric consisted of three areas of assessment, 1) understanding of the problem, 2) problem solving, and 3) mathematical communication. The problems were first pilot tested in two 4th grade classes. Modified problems were then tested in a different 4th grade classroom. The study showed that the three defined areas of evaluation framework (problem understanding, problem solving and mathematical communication) were measurable and analyzable using the developed grading rubric. We then conclude that he descriptive evaluation could be used as an effective tool for improving teacher performance in elementary school mathematics.

  • PDF