학교수학에서 정적분과 치환적분법의 개념은 확률밀도함수의 도입, 연속확률변수의 기댓값, 정규분포의 표준화와 관련하여 수학적 연결성을 가진다. 그러나 개정교육과정의 '미적분과 통계 기본', '적분과 통계' 과목의 교육과정해설서와 검인정 교과서 및 익힘책에서 적분단원과 통계단원 사이의 수학적 연결성 고려가 어려움을 발견하였다. 본 연구는 학교수학에서 확률밀도함수의 도입, 연속확률변수의 기댓값, 정규분포의 표준화에 대하여 적분단원과의 수학적 연결성을 고려한 지도방안 마련을 목적으로 한다. 세개념에 대한 학생대상 실태조사와 개정교육과정의 교육과정해설서, 교과서, 익힘책, 그리고 국내 외 통계학(확률론) 도서(국내 13종, 국외 22종)의 내용을 비교하였다. 이를 바탕으로 세 개념에 대한 지도내용을 개발하여 실제 수업에 적용해보았고, 교육과정개정이나 교과서의 내용구성 변화에 대한 시사점을 발견하여 그 결과를 제언하였다.
Mathematics is means for making sense of one's experiential world and products of human activities. A usefulness of mathematics is derived from this features of mathematics. Keeping the meaning of situations during the mathematizing of situations. However, theories about the development of mathematical concepts have turned mainly to an understanding of invariants. The purpose of this study is to show the possibility of computer in representing situation and phenomena. First, we consider situated cognition theory for looking for the relation between various representation and situation in problem. The mathematical concepts or model involves situations, invariants, representations. Thus, we should involve the meaning of situations and translations among various representations in the process of mathematization. Second, we show how the process of computational mathematization can serve as window on relating situations and representations, among various representations. When using computer software such as ALGEBRA ANIMATION in mathematics classrooms, we identified two benifits First, computer software can reduce the cognitive burden for understanding the translation among various mathematical representations. Further, computer softwares is able to connect mathematical representations and concepts to directly situations or phenomena. We propose the case study for the effect of computer software on practical mathematics classrooms.
The purpose of this study is to find out what mathematical situation means, how to pose a meaningful situation and how situation-centered teaching could be done. The obtained informations will help learners to improve their math abilities. A survey was done to investigate teachers' perception on teaching-learning in mathematics by elementary teachers. The result showed that students had to find solutions of the textbook problems accurately in the math classes, calculated many problems for the class time and disliked mathematics. We define mathematical situation. It is artificially scene that emphasize the process of learners doing mathematizing from physical world to identical world. When teacher poses and expresses mathematical situation, learners know mathematical concepts through the process of mathematizing in the mathematical situation. Mathematical situation contains many concepts and happens in real life. Learners act with real things or models in the mathematical situation. Mathematical situation can be posed by 5 steps(learners' environment investigation step, mathematical knowledge investigation step, mathematical situation development step, adaption step and reflection step). Situation-centered teaching enhances mathematical connections, arises learners' interest and develops the ability of doing mathematics. Therefore teachers have to reform textbook based on connections of mathematics, other subject and real life, math curriculum, learners' level, learners' experience, learners' interest and so on.
The author has been teaching with an instructional module consisting of many mathematical concepts, based on designs formed by personal names or words to arouse students' interesting in learning mathematics. This module has been growing since it was first used as a supplementary lesson for calculus students. Now it consists of concepts that connect with mathematical topics such as number sense, algebraic thinking, geometry, and statistical reasoning, as well as other subjects such as art and quilt design. With its content we can provide our students the basic mathematical knowledge needed for further study in their own fields. In this article, we will demonstrate the latest development of this instructional module, which makes connections between mathematical knowledge and the design of personal quilt patterns. We will exhibit a 'Quilt of Nations' which consists of the designed quilt blocks of different countries, such as USA, Japan, Taiwan, Korea and others, as well as a quilt design using the abbreviation of this seminar. Then we will talk about how the connections are built, and how to design these mathematically rich, uniquely created, beautifully designed, and personalized quilt block patterns.
This paper is to give a brief introduction to a new discipline called 'conceptual metaphor' and 'mathematical metaphor(Lakoff & Nunez, 2000) from the viewpoint of mathematics education and to analyze the metaphors at 4th graders' mathematics classroom as a case of conceptual metaphors. First, contemporary conception on metaphors is reviewed. Second, it is discussed on the effects and defaults of metaphors in teaching and learning mathematics. Finally, as a case study of mathematical metaphors, conceptual metaphors on the concepts of triangles at 4th graders' mathematics classrooms are analyzed. Students may reason metaphorically to understand mathematical concepts. Conceptual metaphor makes mathematics enormously rich, but it also brings confusion and paradox. Digging out the metaphors may lighten both our spontaneous everyday conceptions and scientific theorizing(Sfard, 1998). Studies of metaphors give us the power of understanding the culture of mathematics classroom and also generate it.
Deep comprehension of basic mathematical notions and concepts is a basic condition of a successful teaching. Some elements of algebraic thinking belong to the elementary school mathematics. The question "What stays the same and what changes?" link arithmetic problems with algebraic conception of variable. We have studied beliefs and comprehensions of future elementary school mathematics teachers on early algebra. Pre-service teachers from three academic pedagogical colleges deal with mathematical problems from the pre-algebra point of view, with the emphasis on changes and invariants. The idea is that the intensive use of non-formal algebra may help learners to construct a better understanding of fundamental ideas of arithmetic on the strong basis of algebraic thinking. In this article the study concerning arithmetic series is described. Considerable number of pre-service teachers moved from formulas to deep comprehension of the subject. Additionally, there are indications of ability to apply the conception of change and invariance in other mathematical and didactical contexts.
이 연구의 목적은 인식론 분석을 통해 수학사의 세 가지 역할을 분류하는 것이다. 무한과 극한에 대한 수학사를 바탕으로 네 가지의 다른 인식론들을 통해 "잠재적 무한"과 "실제적 무한" 담화를 묘사한다. 무한과 극한 개념의 상호 의존성을 또한 제시한다. 이러한 분석들을 이용하여 무한과 극한에 대한 수학사의 세가지 다른 사용을 보이고자 한다 : 과거, 현재, 그리고 미래사용.
본 연구는 증명을 성공적으로 구성하는 학생들은 수학적 개념을 어떻게 이해하고 있으며, 증명을 어떻게 구성하는 지를 살펴보고 이를 통해 증명을 구성하는 다양한 방식과 개념 이해의 관련성을 분석하는 데 목적이 있다. 증명 구성에 도움이 되는 수학 학습에 제언을 얻기 위해서는 증명을 구성하는 과정과 그 과정에서 개념이 어떻게 반영되고 이용되는 지를 살펴볼 필요가 있다. 이를 위하여 4명의 수학교육과 학생들을 대상으로 사례연구를 실시하였다. 그 결과 구문론적 증명을 하는 학생들은 형식적 개념의 내용을 정확하게 알고 있을 뿐만 아니라 그 개념이 담겨있는 명제는 어떠한 방식으로 증명하는 지 그 방법까지 알고 있었다. 실제 증명에서도 평소 증명 경험을 통하여 학습한 증명 전개 방법을 이용하여 증명하는 것을 볼 수 있었으며, 이로부터 증명 방법에 대한 절차적 지식이 구문론적 증명에는 중요한 요소라는 결론을 얻을 수 있었다. 의미론적 증명을 하는 학생들은 형식적 개념의 내용을 정확하게 알고 있고 그 내용과 의미를 본인만의 언어나 그림으로 표현한 개념 이미지를 가지고 있었다. 구문론적 증명을 하는 학생들의 개념 이미지와 비교해보았을 때, 의미론적 증명을 하는 학생들의 개념 이미지는 구문론적 증명을 하는 학생들의 개념 이미지보다 형식적 개념의 내용을 잘 반영하고 있었다. 이러한 개념 이미지는 개념 이미지를 활용하여 증명의 아이디어를 생각하고, 생각한 아이디어를 증명의 형식에 맞게 표현하는 데 사용된다는 점에서 의미론적 증명에 필요한 요소라는 것을 발견할 수 있었다.
수학적 지식들이 참으로 인정되기 위해서는 많은 시간과 노력이 필요하다. 수학적 지식들은 추가되거나, 수정되거나, 혹은 거짓인 것으로 밝혀져왔다. 수학적 지식들은 수학적 언어, 명제, 추론, 질문, 메타수학적 관점으로 이루어져있다. 이것들은 수학자들의 연구과 반박에 의해, 반박을 고려한 증명의 수정에 의해, 새로운 개념의 소개에 의해, 새로운 개념에 대한 질문의 추가에 의해, 새로운 질문에 대한 답변을 찾기 위한 노력에 의해, 이전의 연구들을 현재에 적용하려는 시도에 의해 끊임없이 변화되어왔다. 본 연구에서는 Kitcher가 제시한 수학적 지식의 변화를 소개하고, 그 변화의 다양한 예에 대하여 살펴본다.
The purpose of this study is to analyze the mathematical creativity and computational thinking of mathematically gifted elementary students through a convergence class using programming and to identify what it means to provide the convergence class using Python for the mathematical creativity and computational thinking of mathematically gifted elementary students. To this end, the content of the nine sessions of the Python-applied convergence programs were developed, exploratory and heuristic case study was conducted to observe and analyze the mathematical creativity and computational thinking of mathematically gifted elementary students. The subject of this study was a single group of sixteen students from the mathematics and science gifted class, and the content of the nine sessions of the Python convergence class was recorded on their tablets. Additional data was collected through audio recording, observation. In fact, in order to solve a given problem creatively, students not only naturally organized and formalized existing mathematical concepts, mathematical symbols, and programming instructions, but also showed divergent thinking to solve problems flexibly from various perspectives. In addition, students experienced abstraction, iterative thinking, and critical thinking through activities to remove unnecessary elements, extract key elements, analyze mathematical concepts, and decompose problems into small components, and math gifted students showed a sense of achievement and challenge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.