• Title/Summary/Keyword: Mathematical Activity

Search Result 460, Processing Time 0.028 seconds

A Study of Counting Ability of Mathematical Low Achievers in Low Grades of Elementary School (초등학교 저학년 수학부진아의 수세기 능력 연구)

  • Kim, Soo-Mi
    • School Mathematics
    • /
    • v.12 no.2
    • /
    • pp.137-150
    • /
    • 2010
  • This study has planned to understand the counting ability of mathematical low achievers(MLAs) in low grades of elementary school. For this, four MLAs of second graders were chosen as a experimental group and four MLAs of fourth graders and two mid-achievers of second grades were chosen as a comparison group. Every students were individually interviewed and their data were analyzed with three respects: accuracy, speed, efficiency. The results are the following three. First, the experimental group is still not used to counting. They counted slowly, made many mistakes and errors, and used inefficient strategies during counting. Second, It is hard to expect natural improvement of their counting performance as growing up. Finally, the explicit correlation between counting ability and arithmetic ability is not drown in this study, but the possibility still remains. These results tell us that we need to stress counting activity to MLAs when they are low graders.

  • PDF

Theoretical conceptualizations of Educational Interest Focused on Mathematics Learning (교육적 흥미 이론이 수학교육에 주는 의미 고찰)

  • Choi, JiSun
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.1-23
    • /
    • 2020
  • The purpose of this study is to theorize the conceptualizations of educational interest focused on mathematics learning and to investigate the directions of increasing students' interest in mathematics. This study reconsiders the interest theory of Dewey, classification of situational interest and individual interest, and the experimental research of mathematical interest. The conceptions of educational interest on mathematics learning are as follows. First, mathematical interest refers to the total experiences that an individual feels the need to engage in mathematical objects. Second, making a distinction between situational interest and individual interest is effective in suggesting educational interventions in order to improve students' learning interest. Third, interest is characterized by affect, cognition, and value. According to the conceptions of educational interest on mathematics learning, this study suggests that we should develop or construct good mathematics tasks to increase students' interest in mathematics. Good mathematics tasks consider both students' understanding and students' affection and provide activity's goals or values to be noticed by students.

Analysis of Students' Mathematical Thinking Characteristics Appeared in the Process of Searching for All type of Triangle that Can be Made with Sphinx Puzzle (스핑크스퍼즐로 모든 삼각형 해법 찾기 과제에서 나타나는 학생들의 수학적 사고 특성 분석)

  • Bang, Sin Young;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.1
    • /
    • pp.165-184
    • /
    • 2013
  • In order to utilize Sphinx Puzzle in shape education or deductive reasoning, a lesson employing Dienes' six-stage theory of learning mathematics was structured to be applied to students of 6th grade of elementary school. 4 students of 6th grade of elementary school, the researcher's current workplace, were selected as subjects. The academic achievement level of 4 subjects range across top to medium, who are generally enthusiastic and hardworking in learning activities. During the 3 lessons, the researcher played role as the guide and observer, recorded observation, collected activity sheet written by subjects, presentation materials, essays on the experience, interview data, and analyzed them to the detail. A task of finding every possible triangle out of pieces of Sphinx Puzzle was given, and until 6 steps of formalization was set, students' attitude to find a better way of mathematical deduction, especially that of operational thinking and deductive thinking, was carefully observed and analyzed.

  • PDF

Using the Cabri3D Program for Enhancing Problem Solving Ability (문제해결력 신장을 위한 Cabri3D의 교육적 활용)

  • Kim, Nam-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.345-366
    • /
    • 2006
  • In this study, we investigated the methods of using the Cabri3D program for education of problem solving in school mathematics. Cabri3D is the program that can represent 3-dimensional figures and explore these in dynamic method. By using this program, we can see mathematical relations in space or mathematical properties in 3-dimensional figures vidually. We conducted classroom activity exploring Cabri3D with 15 pre-service leachers in 2006. In this process, we collected practical examples that can assist four stages of problem solving. Through the analysis of these examples, we concluded that Cabri3D is useful instrument to enhance problem solving ability and suggested it's educational usage as follows. In the stage of understanding the problem, it can be used to serve visual understanding and intuitive belief on the meaning of the problem, mathematical relations or properties in 3-dimensional figures. In the stage of devising a plan, it can be used to extend students's 2-dimensional thinking to 3-dimensional thinking by analogy. In the stage of carrying out the plan, it can be used to help the process to lead deductive thinking. In the stage of looking back at the work, it can be used to assist the process applying present work's result or method to another problem, checking the work, new problem posing.

  • PDF

The Relationship between Scientific Creativity of Science-gifted Elementary Students and Multiple Intelligence - Focusing on the Subject of Biology - (초등과학영재학생의 과학창의성과 다중지능의 관계 - 생명 영역을 중심으로 -)

  • Kim, Minju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.3
    • /
    • pp.369-381
    • /
    • 2020
  • This study aims to analyse the relationship between multiple intelligence and scientific creativity of science-gifted elementary students focusing on the subject of biology. For this, 37 science-gifted fifth-graders in the Science-Gifted Education Center at an Office of Education conducted a multiple intelligence test. In addition, researchers collected science-gifted students' results of scientific creativity activity at the botanical garden field trip. The main findings from this study are as follows: First, strong intelligence was logical-mathematical intelligence for gifted students, and weak intelligence was found to be naturalistic intelligence for them. Second, there was no significant correlation in the relationship between multiple intelligence and scientific creativity of science-gifted students. Third, as a result of independent two sample t-test for each intelligence and scientific creativity scores divided into the upper and lower groups, only verbal-linguistic intelligence statistically differed significantly at the level of p<.05 (t=2.13, df=35, p=0.04). Fourth, as a result of conducting a two-way analysis to see if there were any interaction effects, verbal-linguistic and visual-spatial, logical-mathematical and visual-spatial, logical-mathematical and bodily-kinesthetic, and visual-spatial and musical-rhythmic intelligence all showed significant values at the level of p<.05 level in interaction effects on originality element comprising scientific creativity. Fifth, an analysis of students with high naturalistic intelligence showed that their scores of scientific creativity tasks conducted at the botanical garden field trip were all lower. Based on the results of this study, this study discussed the implications of scientific creativity learning linking multiple intelligence in primary science education and gifted education.

A Study on the Application of FBS Design Model to Preliminary Ship Design (선박 초기설계에 FBS 설계 모델의 응용에 관한 연구)

  • Park, Chang-Kue;Yang, Young-Soon;Pyo, Sang-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.192-201
    • /
    • 2008
  • The design process becomes more difficult due to the increasing complexity of products. Thus, without any proper design experience, designer cannot handle his design problems systematically. Besides, the conventional optimal design method cannot be used effectively at the early design stage, since most design problems must be formulated in terms of objective and constraint functions based on the mathematical concepts of Operation Research. Thus, in this paper, new design concept based on FBS (Function-Behavior-Structure) design model is introduced to help the novice designer formulate the complex design problems systematically into a mathematical form. In this FBS model, function means the designer's new intents designer wants to create for, structure stand for a final product configuration and behaviour is a product's performance. FBS design model is thus rather totally different concept used for formulating design problem, compared with conventional optimal design method. To validate this new FBS model, 330K VLCC design case is performed, and we found, though it is one design example case, that this new design concept could be effectively used for future ship design problems since, during the formulating design problem, the only engineering terminology such as function, structure, and behaviour of design product is used based on the engineering concepts, instead of mathematical terminology such as objective and constraints.

Analysis of abduction and thinking strategies by type of mathematical problem posing (수학 문제 만들기 유형에 따른 가추 유형과 가추에 동원된 사고 전략 분석)

  • Lee, Myoung Hwa;Kim, Sun Hee
    • The Mathematical Education
    • /
    • v.59 no.1
    • /
    • pp.81-99
    • /
    • 2020
  • This study examined the types of abduction and the thinking strategies by the mathematics problems posed by students. Four students who were 2nd graders in middle school participated in problem posing on four tasks that were given, and the problems that they posed were classified into equivalence problem, isomorphic problem, and similar problem. The type of abduction appeared were different depending on the type of problems that students posed. In case of equivalence problem, the given condition of the problems was recognized as object for posing problems and it was the manipulative abduction. In isomorphic problem and similar problem, manipulative abduction, theoretical abduction, and creative abduction were all manifested, and creative abduction was manifested more in similar problem than in isomorphic problem. Thinking strategies employed at abduction were examined in order to find out what rules were presumed by students across problem posing activity. Seven types of thinking strategies were identified as having been used on rule inference by manipulative selective abduction. Three types of knowledge were used on rule inference by theoretical selective abduction. Three types of thinking strategies were used on rule inference by creative abduction.

The Effects of Graphics Representation of Trigonometry Modelling on Question Generating and Idea Sharing (삼각함수의 모델링에서 그래픽 과정이 학생들의 질문 생성과 수학적 아이디어 교환에 미치는 효과)

  • Yoon, Jae yeon;Shin, Hyun sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.217-241
    • /
    • 2021
  • The purpose of this study is to qualitatively examine the effects of graphics representation of trigonometry modelling concerning question generating and idea sharing. The experimental setting(Experiment Group) was one class (N=26) at a public high school. The modelling process was designed as a process-oriented conceptualization divided into three steps i.e., (1) game with idea sharing and question generating, (2) graphic representation, and (3) symbolization in the mathematical applied tasks related to trigonometry function. The result indicates that Graphic Representation with Game Activity increases the opportunity of question generating and idea sharing during experimental work. Also, the results show that the introduction of computer graphics enhances the teaching of mathematical quantity in highschool classrooms.

Comparison of Middle School Students' Similarities Revealed in the Process of Word Problems Solving According to Covariational Reasoning (두 중학생의 공변 추론 수준에 따른 연립방정식 문장제의 해결에서 나타나는 유사성 비교)

  • Ma, Minyoung
    • Communications of Mathematical Education
    • /
    • v.35 no.3
    • /
    • pp.323-340
    • /
    • 2021
  • The purpose of this case study is to explore the similarities revealed in the process of solving and generalizing word problems related to systems of linear equations in two variables according to covariational reasoning. As a result, student S, who reasoned with coordination of value level, had a static image of the quantities given in the situation. student D, who reasoned with smooth continuous covariation level, had a dynamic image of the quantities in the problem situation and constructed an invariant relationship between the quantities. The results of this study suggest that the activity that constructs the relationship between the quantities in solving word problems helps to strengthen the mathematical problem solving ability, and that teaching methods should be prepared to strengthen students' covariational reasoning in algebra learning.

An analysis of elementary students' reasoning on the sum of triangle angles ('삼각형 세 각의 크기의 합'에 관한 초등학생의 추론 연구)

  • Kim, Ji Hyun
    • Education of Primary School Mathematics
    • /
    • v.27 no.2
    • /
    • pp.155-171
    • /
    • 2024
  • This study compared and analyzed students' reasoning processes and justification methods when introducing the concept of "the sum of angles in a triangle" in mathematics classes with a focus on both measurement and geometric aspects. To confirm this, the research was conducted in a 4th-grade class at H Elementary School in Suwon, Gyeonggi-do, South Korea. The conclusions drawn from this study are as follows. First, there is a significant difference when introducing "the sum of angles in a triangle" in mathematics classes from a measurement perspective compared to a geometric perspective. Second, justifying the statement "the sum of angles in a triangle is 180°" is more effective when explained through a measurement approach, such as "adding the sizes of the three angles gives 180°," rather than a geometric approach, such as "the sum of the angles forms a straight angle." Since elementary students understand mathematical knowledge through manipulative activities, the level of activity is connected to the quality of mathematics learning. Research on this reasoning process will serve as foundational material for approaching the concept of "the sum of angles in a triangle" within the "Geometry and Measurement" domain of the Revised 2022 curriculum.