• Title/Summary/Keyword: Material switching system

Search Result 81, Processing Time 0.027 seconds

EO performance of IPS cell on the inorganic films surface using DuoPIGatron ion source (유기박막표면에 DuoPIGatron 이온소스를 이용한 IPS 셀의 전기광학 특성)

  • Kim, Byoung-Yong;Hwang, Jeoung-Yeon;Kim, Sang-Hun;Han, Jung-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.89-90
    • /
    • 2006
  • Electro-optical (EO) characteristics of in-plane switching (IPS) cell on the polyimide surface using obliquely ion beam (IB) exposure as new ion beam (IB) type system (DuoPIGatrion ion source). A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the polyimide surface was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned IPS-cell on poly imide surface ; the stable VT curve in the ion-beam-aligned IPS cell on a poly imide (PI) surface with ion beam exposure using new type IB equipment was obtained. and the fast response time in the ion-beam-aligned IPS cell on a polyimide (PI) surface with ion beam exposure using new type IB equipment was obtained.

  • PDF

Volatile Memristor-Based Artificial Spiking Neurons for Bioinspired Computing

  • Yoon, Soon Joo;Lee, Yoon Kyeung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.311-321
    • /
    • 2022
  • The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-semiconductors (CMOS).

Development and Revenue Service of Propulsion System Using Integrated Stack(PEM) and Heat Pipe (일체형 스택(PEM) 및 냉각장치를 적용한 전동차 추진제어장치 개발 및 상용화)

  • Gim, Myung-Han;Lee, Gwang-Guk;Park, Su-Yong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.680-685
    • /
    • 2007
  • Power semiconductor which is adapted in the rolling stock has a high practicality for capacity of high voltage and high speed switching. but it has a trouble of fever cause of high speed On, Off switching loss and the operating junction temperature is limited to $150^{/circ}C$ because is made from the silicon for the foundation material. Therefore, it is important to find a way out of this trouble and must make the countermeasure. In this research, the caloric value of the integrated PEM is calculated to adapt the optimized heat pipe and the reliability of the heat pipe is demonstrated through the cooling performance test and vibration test.

  • PDF

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

A study for piezoelectric properties analysis of the AlN thin film by using PFM (PFM을 이용한 AlN 박막의 압전특성 분석에 관한 연구)

  • Lee, Jong-Taek;Kim, Se-Young;Shin, Hyeon-Chang;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.224-225
    • /
    • 2009
  • Aluminium nitride thin film was deposited on Au electrode and Si substrate by radio frequency sputtering system. X-ray diffraction (XRD) was utilized to identify the AlN phase, and Atomic Force Microscope (AFM) was used to obtain the images of surface morphology and roughness value of AlN thin film. The result of XRD and AFM measurement showed that the AlN thin film has strong c-axs orientation and smooth surface. In order to investigate piezoelectric response and polarization properties along to the direction of electric field, PFM (Piezoresponse Force Microscope) system was used, and the images of piezoelectric response due to switching of polarization was observed by PFM.

  • PDF

Fast Switching Properties of TN Cell With Graphene Quantum Dots (그라핀 양자점을 도핑한 TN 셀의 고속 스위칭 특성)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • In this study, we report the doping effect of graphene quantum dots (QDs) in nematic liquid crystal (NLC) system on rubbed polyimide (PI) surface. The good LC alignment and high thermal stability in QD-LC cell system on rubbed PI surfaces can be measured. Also, the low threshold voltage of QD-TN cell was observed about 2.77 V. The fast response time of 13.2 ms for QD-TN cell can be achieved. Finally, the good voltage holding ratio of QD-TN cell on rubbed PI surface was measured.

Non-Equilibrium Green Function Method in Spin Transfer Torque

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.72-76
    • /
    • 2007
  • We investigate the spin transfer torque in metallic multilayer system by employing Keldysh non-equilibrium Green function method. We study the dependences of the spin transfer torque on the detailed energy configuration of ferromagnetic, spacer, and lead layers. With Keldysh non-equilibrium Green function method applied to a single band model, we explore spin transfer torque effect in various layer structures and for various material parameters.

Buck converter with new driving circuit in TV poer system (TV 전원장치에서 새로운 구동 회로에 의한 buck converter)

  • 정진국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.56-61
    • /
    • 1996
  • In this paper, new buck converter of a TV power system is presented. First, we devised a revised driving circuit for an emitter-coupled type buck converter, by which it is possible to reduce the material cost of transformers and voltage stress of power device. Secondly, we adopted a hybrid oscillation technique. When TV system is in off-stage, initial standby power which is necessary for remote controllable TV system is supplied by self-oscillating mode. Main power which is necessry in TV system bing on state is provided by an externally triggered oscillating mode. The switching frequency is synchronized to the oscillating frequency of horizontal deflection in TV, by which we can reduce picture noises and the size of power transformer. Thirdly, a simple error amplifier is inserted to the feed-back loop to keep the output voltage constant which means pulse width modulatio mode is added in driving part of power device. Finally, we showed by experiments that our proposed converter performs well enough to be close to the theoretically predicted values.

  • PDF

A Study on the Material Characteristics of Contacts on Bias Track Relay (바이어스 궤도계전기 접점의 재질 특성에 관한 연구)

  • Kim, Hee-Dae;Lee, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.597-603
    • /
    • 2012
  • The cases for selecting contact materials of Ag and AgC for Bias Track Relay are the studies and their safety evaluations are proposed in this paper. The welding at the relative low current has occurred in Ag contacts, but the one has not occurred in AgC contacts although the high currents flow since it has an excellent temperature characteristic. In the repetitive switching experiment, more unstable resistance and transfer phenomena has occurred in contacts as the switching numbers of AgC contacts increase, which results in more consumption of contacts. In the experiments, there exists a trade off relationship between welding and resistance variation. AgC contacts have excellent characteristics in welding, but the caution is required in using them since a lot of repetition switching produces much resistance variation. However, Ag contacts have excellent characteristics in repetitive switching, but weak ones in welding.

The Design of LLC-typed Resonant Converter with Ga-N HEMT PFC and SR method for Electric Vehicle (Ga-N HEMT PFC 및 SR기법이 적용된 전기자동차용 LLC 공진형컨버터의 설계)

  • Yoo, DongJoo;Chun, Ji-Yong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.313-319
    • /
    • 2017
  • In this paper, we present a design technique that miniaturises the DC-DC converter, a key component in the electric vehicle system, using the advanced material (Ga-N HEMT) in the LLC resonant converter and freely changes the resonant frequency. This design is also proposed to improve the efficiency and temperature characteristics by adding SR Topology in the secondary side output during the operation of power supply. In this experiment, as a consequence of the constructed circuit with the operation of high switching frequency of 200 kHz, the size of LLC and PFC was able to be minimised by 40[%]. Thus, the characteristics of operating temperature demonstrated $60-65^{\circ}C$ without a heat sink, when the temperature was measured at 250W (12V/20A). The features were all due to the advantages of the change of switching frequency, switching circuits implementation, and the maximisation of switching frequency. Based on these design results, we would like to implement more than 1 [kW].