• Title/Summary/Keyword: Material Uncertainties

Search Result 218, Processing Time 0.031 seconds

System Reliability Analysis Considering Correlation of Performances (성능의 상관관계를 고려한 시스템 신뢰성 해석)

  • Kim, Saekyeol;Lim, Woochul;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.291-297
    • /
    • 2017
  • Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

RSM-based Probabilistic Reliability Analysis of Axial Single Pile Structure (축하중 단말뚝구조물의 RSM기반 확률론적 신뢰성해석)

  • Huh Jung-Won;Kwak Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.51-61
    • /
    • 2006
  • An efficient and accurate hybrid reliability analysis method is proposed in this paper to quantify the risk of an axially loaded single pile considering pile-soil interaction behavior and uncertainties in various design variables. The proposed method intelligently integrates the concepts of the response surface method, the finite difference method, the first-order reliability method, and the iterative linear interpolation scheme. The load transfer method is incorporated into the finite difference method for the deterministic analysis of a single pile-soil system. The uncertainties associated with load conditions, material and section properties of a pile and soil properties are explicitly considered. The risk corresponding to both serviceability limit state and strength limit state of the pile and soil is estimated. Applicability, accuracy and efficiency of the proposed method in the safety assessment of a realistic pile-soil system subjected to axial loads are verified by comparing it with the results of the Monte Carlo simulation technique.

Algorithm for Calculating Uncertainty in the Computational Simulation for Radiochronometry of Nuclear Materials (핵물질 연대추정을 위한 전산모사 불확도 계산 알고리즘)

  • Jae-Chan Park;Tae-Hoon Jeon;Jin-Young Chung;Jung-Ho Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1075-1089
    • /
    • 2023
  • Nuclear forensics is an essential part of nuclear material control and nuclear non-proliferation verification. Radiochronometry for nuclear forensics is used to estimate the timing of refinement and production of nuclear materials based on decay chain characteristics and the Bateman equation. The results of radiochronometry have uncertainties because the decay constant and number of nuclides are statistics derived from analyses or repeated experiments and involve uncertainties. The aim of this study was to develop an uncertainty calculation algorithm by performing computational simulation to overcome the limitations of the existing uncertainty calculation method for radiochronometry based on the Bateman equation. The results of the proposed uncertainty calculation algorithm were comparable to those of the existing method. The algorithm allowed for more than two generations of uncertainty calculations and mitigated the underestimation of the decay constant during the uncertainty calculation.

Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Jannati, Jamil;Yazdaninejadi, Amin;Talavat, Vahid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.

A Performance Measure for Supply Chain System using Reliability Theory (신뢰성 이론을 이용한 공급 사슬 시스템의 평가 척도에 관한 연구)

  • Cho Min Kwan;Lee Young Hae
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.195-202
    • /
    • 2002
  • The primary objective of Supply Chain Management (SCM) is to optimize the cash, material and information flow for satisfying customer demands through coordinating the relationship between Supply Chain components such as suppliers, manufacturers, and inventories, etc. By Supply Chain Planning (SCP), operation tasks or goals, should be done in specific due date, are ordered to each SC component for achieving such objective. However, the achievement for operation tasks or goals is affected by uncertainties in SC. In general, reliability theory Is explained as the probability that a product or system will perform its specified function under prescribed conditions without failure for a specified period of time. Therefore, the reliability of SC can be defined as the probability that SC will satisfy customer demands until the specific due date. In this paper, a basic framework to evaluate reliability is respectively proposed as supply chain components, and then a overall framework to estimate the reliability for SC is also proposed.

  • PDF

Layup Optimization of Composite Laminates with Free Edge Considering Bounded Uncertainty (물성치의 불확실성을 고려한 자유단이 있는 복합재료 적층평판의 최적화)

  • 조맹효;이승윤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.155-158
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the strength of laminated composites with free-edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for light weight design of laminated composite structures since uncertainties are always encountered in composite materials.

  • PDF

Behaviors of PSC-Beam Bridges According to Continuity of Spans (1) (PSC-Beam 교량의 연속화에 따른 거동해석 (1))

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.11-20
    • /
    • 1999
  • This paper deals with behaviors of PSC-Beam bridges according to continuity of spans. To analyze the long-term behavior of bridges, an analytical model which can simulate the effects of creep, the shrinkage of concrete, and the cracking of concrete slabs in the negative moment regions is introduced. To consider the different material properties across the sectional depth, the layer approach in which a section is divided into imaginary concrete and steel layers is adopted. The element stiffness matrix is constructed according to the assumed displacement field formulation, and the creep and shrinkage effects of concrete are considered in accordance with the first-order algorithm based on the expansion of the creep compliance. Correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed model. Besides, many uncertainties related to the continuity of spans are analyzed to minimize deck cracking at interior supports.

A Methodology for Analysis of Supply Chain System using Reliability Theory (신뢰성 이론을 이용한 공급 사슬 시스템 분석에 관한 연구)

  • 조민관;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.257-260
    • /
    • 2001
  • The primary objective of Supply Chain Management (SCM) is to optimize the cash, material and information flow considering all components of Supply Chain (SC) . The plan, established for achieving such objective, is called Supply Chain Planning (SCP) . This SCP gives each SC component specific volume or operation task, should be done in specific due date, for optimizing SC. In detail, the degree of accomplishment for SCP, depends on the SCP achievement of each SC components, is very close to successful SCM. However, this achievement is affected by uncertainties about time and volume. In general, reliability concepts means the probability that a product or system will perform its specified function under prescribed conditions without failure for a specified period of time. Therefore, the concept of Supply Chain Reliability (SCR) and an analytic methodology to calculate the degree of achievement SCP using reliability concept are proposed in this paper. SCR means that the degree of achievement for SCP considering all SC components in due date. SCR can be used to measure the performance of whole supply chain and indicate the direction of SCP.

  • PDF