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ABSTRACT

Nuclear forensics is an essential part of nuclear material control and nuclear non-proliferation verification. 

Radiochronometry for nuclear forensics is used to estimate the timing of refinement and production of nuclear 

materials based on decay chain characteristics and the Bateman equation. The results of radiochronometry have 

uncertainties because the decay constant and number of nuclides are statistics derived from analyses or repeated 

experiments and involve uncertainties. The aim of this study was to develop an uncertainty calculation algorithm 

by performing computational simulation to overcome the limitations of the existing uncertainty calculation method 

for radiochronometry based on the Bateman equation. The results of the proposed uncertainty calculation 

algorithm were comparable to those of the existing method. The algorithm allowed for more than two generations 

of uncertainty calculations and mitigated the underestimation of the decay constant during the uncertainty 

calculation.
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Ⅰ. INTRODUCTION

Radiochronometry is the measurement of 

radioactive materials and their decay products to 

determine the age of the material. Radiochronometry 

of nuclear materials involves uncertainties and affects 

the reliability of the results. Therefore, the uncertainty 

in nuclear activity radiochronometry requires an 

appropriate calculation that is neither overestimated 

nor underestimated as a representative value of the 

accuracy and reliability of the radiochronometry 

results. However, the calculation method for 

uncertainty estimation proposed by the 

LLNL(Lawrence Livermore National Laboratory) and 

others is dominated by the uncertainty in the activity 

ratios of parent and daughter nuclides. Therefore, it 

underestimates the uncertainties in decay constants 

and initial nuclides. By contrast, the calculation 

method for estimating the uncertainty of nuclear 

activity radiochronometry by applying the Bateman 

equation can only estimate the uncertainty in the 

one-step relationship between the parent and the 

daughter nuclides owing to the complexity of the 

equation. Therefore, problems with the reliability of 

the radiochronometry results, in terms of the 

uncertainty and the inability to select different 

signature nuclides, are encountered. The LLNL 

proposed that the development of an uncertainty 

estimation algorithm utilizing Monte Carlo methods 

was the only approach for uncertainty calculations that 

included decay constants and other factors to mitigate 

the underestimation of uncertainty factors, which was 

a limitation of the calculations for uncertainty 

estimation based on the Bateman equation, and to 
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estimate uncertainty for signature nuclide relationships 

in decay chain of more than two steps, such as parent 

and daughter nuclides[1,2].

The aim of this study is to prevent the underestimation 

of uncertainty factors in radiochronometry calculations by 

utilizing computational simulation methods. Additionally, 

the aim is to develop an algorithm that allows for 

uncertainty estimation even when selecting signature 

nuclides relationships beyond the two step within the 

decay chain. 

The calculation and computational simulation 

methods for uncertainty estimation based on the 

Bateman equation are investigated to develop an 

algorithm that can estimate uncertainty even when 

selecting signature nuclides in more than two steps of 

relationships within a decay chain. The results of the 

developed computational simulation method are 

compared with the calculation results of the 

conventional radiochronometry method based on the 

Bateman equation. The developed algorithm for 

estimating uncertainty in radiochronometry can be 

utilized as a nuclear-forensics-based technology to 

enhance nuclear non-proliferation capabilities globally 

and strengthen nuclear material control capabilities.

Ⅱ. MATERIAL AND METHODS

1. Development of an algorithm for estimating 

uncertainty in nuclear material radiochronometry

Uncertainty is a non-negative parameter that 

characterizes the variance of a measurement over a 

quantity based on the information used[3]. Uncertainty 

is categorized into two types based on how it is 

evaluated: Types A and B. Type A uncertainty is 

defined as the uncertainty calculated by statistical 

analysis of the observations, and Type B uncertainty 

is defined as the uncertainty calculated by methods 

other than statistical analysis of the observations [3]. 

The conventional estimation of uncertainty in 

radiochronometry based on the Bateman equation is 

Type B uncertainty, which is calculated by arithmetic 

combined standard uncertainty. However, methods 

based on the Bateman equation can only derive 

uncertainties up to the first generation of the 

relationship and are limited by the underestimation of 

the decay factor. This has led to research on methods 

for calculating Type A uncertainty, which is derived 

from statistical analysis. This study analyzed the 

mathematical method based on the Bateman equation 

for Type B uncertainty and investigated the 

computational simulation method for Type A 

uncertainty estimation.

2. Estimating uncertainty with mathematical models

In this study, the uncertainty propagation model and 

influencing factors were analyzed to investigate the 

uncertainty estimation method using a mathematical 

model based on the Bateman equation, and the 

uncertainty estimation algorithm using the mathematical 

model and influencing factors was derived.

2.1. Uncertainty propagation model and influencing 

factors

Nuclear activity radiochronometry utilizes the 

Bateman equation[4], which is a system of coupled 

differential equations for variables, such as the initial 

abundance of each nuclide, branching ratio, and decay 

constant, to represent the abundance of nuclides over 

time when multiple nuclides decay simultaneously and 

is expressed as Equation (1).
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(2)

 : Number of nuclide

 : Decay constant   

  : Time 

For nuclear activity radiochronometry, if the initial 

nuclear material (parent nuclide) is assumed to be in a 

pure state unmixed with daughter nuclides at the time 

of production (or purification), the following equation 

holds between the parent and daughter nuclides[5].
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Solving Equation (2) for time t leads to Equation 

(3), which can be used to estimate the timing of the 

production (or purification) of the nuclear material 

under investigation[1].

 
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
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
 (3)

Equation (3) is used for the calculation of the 

elapsed time, t, from the main factors of the Bateman 

equation, t, N, and λ. The main influencing factors for 

calculating t in Equation (3) are N, which is the 

uncertainty in the analysis of the nuclear material, and 

λ, which is the decay constant and has the uncertainty 

of statistics derived from repeated experiments. The 

uncertainty of N varies depending on the material and 

method, but the analytical uncertainties of 234U and 
230Th at each of the laboratories utilized in this study 

were within 1%[6]. The uncertainty of λ is smaller 

than the uncertainty of N, with an uncertainty of 

approximately 0.1% for most nuclides. However, 

according to the half-life information provided by the 

National Nuclear Data Center, it has a high 

uncertainty of approximately 15% for nuclides with 

short half-lives, such as 218At, which can be an 

important uncertainty factor in age estimation using 

the characteristics of the decay chain. Thus, as N and 

λ are uncertain values, the radiometric value t derived 

from those factors is uncertain[7].

The N derived from gamma spectroscopy, alpha 

spectroscopy, and mass spectrometry can be expressed 

as R, which is the nuclide ratio of the parent to 

daughter nuclides. The uncertainties (uc,γ, uc,α, and 

uc,ICP-MS) from gamma, alpha, and ICP-MS analyses 

propagate into the uncertainty (uR) of R, which 

propagates into the uncertainty in radiochronometry 

(ut), similar to the uncertainties (uλ1, uλ2) due to 

decay constants. Fig. 1 shows the schematic of the 

propagation model.

Fig. 1. Radiochronometry uncertainty propagation model.

2.2. Method of estimating uncertainty with the 

mathematical model

The calculation method for estimating uncertainty in 

radiochronometry using the Bateman equation is 

calculated using Equation (3), which is derived from 

Equations (1) and (2) in Section 2.1.1, and is shown 

in Equation (4) with λ and R as the influence factors 

for calculating the uncertainty estimate.

 
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
 (4)

 : Activity ratio

The uncertainty in radiochronometry is calculated in 

Equation (5) by using the sensitivity coefficients 

derived by the partial differentiation of Equation (4) 

for each factor and the factor-specific uncertainties.

 

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


 (5)

To derive Equation (5) for calculating the 

uncertainty in radiochronometry, Equation (4) is 

partially differentiated for each factor, and the 

calculated sensitivity coefficients for each factor are 

shown in Equations (6) - (8). The contribution rates 

for each factor in Equation (5) are calculated in 

Equations (9) - (11)[8].
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Equations (6) - (8) are the sensitivity coefficients 

for each factor (R, λ1, and λ2) to the uncertainty in 

radiochronometry and are used in conjunction with the 

uncertainty of each factor to derive the mathematical 

modeling of Equation (5) for the uncertainty in 

radiochronometry.

The contribution of each factor (R, λ1, and λ2) to 

the uncertainty in radiochronometry is given by 

Equations (9) - (11).
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3. Estimating uncertainty with the Monte Carlo

method

The calculations for estimating uncertainties in 

nuclear activity radiochronometry using the Bateman 

equation are described in Sections 2.1. and 2.2. have 

the disadvantage that they are valid only for certain 

conditions, such as the parent and daughter nuclide 

relationships, and cannot be applied to the selection of 

daughter nuclides and further relationships due to the 

complexity of the derivative calculations.

In this study, the Monte Carlo method for 

uncertainty estimation was developed based on the 

computational simulation to overcome the limitations 

of the uncertainty estimation method of the 

mathematical modeling of the Bateman equation. 

Uncertainty estimation methods and influencing 

factors were analyzed, and an uncertainty estimation 

algorithm using the LHS(Latin hypercube sampling) 

method was derived for reliable and efficient 

computational simulation.

3.1. Monte Carlo uncertainty estimation method and 

influencing factors

The Monte Carlo method utilizes the property in 

which the uncertainty factors, λ and R, derived from 

the Bateman equation, are values with uncertainty 

based on the uncertainty distribution. As the results 

are derived by calculating the activity ratio of the 

signature nuclide and estimating the activity ratio 

appropriate to the analyzed value of R, the Monte 

Carlo method enables uncertainty estimation by 

calculating the uncertainty factor λ used to calculate 

the activity ratio and the uncertainty factor R for 

radiochronometry to randomly vary based on the 

uncertainty distribution, deriving values through an 

iterative process and analyzing the distribution of the 

calculated results. However, the Monte Carlo method 

requires many samples to ensure high reliability 

because statistical errors different from the existing 

probability distribution occur in a small number of 
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samples. Problems are associated with the computing 

time and efficiency related to sample collection and 

analysis because the complex calculation process of 

radiochronometry must be carried out in iterative 

operations involving calculations for each sample.

3.2. Latin hypercube sampling (LHS) algorithm for 

estimating uncertainty

An efficient method for extracting the variable is 

needed to prevent statistical errors when the statistical 

probability distribution analyzed for an unknown 

variable with a mean of   is known and the number 

n of samples extracted from this probability 

distribution is small. The LHS method, proposed by 

Mckay, Beckman, and Conover (1979), is a method 

for obtaining effective statistical results with fewer 

samples than that through random sampling for 

computational simulations using the Monte Carlo 

method[9]. LHS is a method of dividing the range of 

the probability distribution into n to prevent biased 

samples from being extracted from the entire 

probability distribution and then extracting n from 

each of the following intervals one by one to avoid 

overlapping extraction. For a uniform distribution, as 

shown in Fig. 2, the probability density function 

equally divides each bin, and samples are drawn from 

the equally divided bins, as shown in the cumulative 

distribution function[10].

Fig. 2. Probability density function (left) and Cumulative 
distribution function (right) in uniform distribution.

When expanded to two dimensions (k = 2) with 

two variables, the grid is divided into equal 

probability intervals equal to the number nk, and 

random sampling is performed such that each row and 

column is selected only once, allowing the entire 

range of each variable to be evenly sampled. Fig. 3 

displays that when two variables follow a uniform 

distribution between 0 and 1, if a sample of size 5 is 

drawn to the LHS, each variable is drawn between 1 

and 5 to obtain [5, 3, 2, 1, 4] and [1, 3, 2, 5, 4], and 

the position of each grid is determined when the two 

variables are paired. Only one point was drawn from 

the corresponding interval for each row and column, 

indicating that the values of the variables were 

sampled at the same rate across the entire range of 

the probability distribution.

Fig. 3. Sampling example from LHS method.

To utilize LHS in the case of a normal distribution, 

we define the range of the normal distribution as [F, 

G], divide it into n intervals between F and G, and 

extract n samples, one from each interval, to avoid 

overlapping samples. For a normal distribution (Fig. 

4), if the area of each interval, representing the sum 

of the probabilities of being extracted from the 

probability density function (extraction probability), is 

equally divided, the equal area of the probability 

density function means that the probability distribution 

range is divided by the same extraction probability. 

This is equivalent to evenly splitting the y-axis 

because the y-axis of the cumulative distribution 

function represents the cumulative sum of the 
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probabilities. An LHS with a normal distribution can 

be sampled by extracting the y-axis from these evenly 

divided probability intervals and finding the x-axis 

corresponding to the extracted y-axis from the 

cumulative distribution function.

Fig. 4. Probability density function (left) and Cumulative 
distribution function (right) in normal distribution.

Random number generators used by most computer 

programs first generate random numbers that follow a 

uniform distribution because it is relatively simple and 

efficient to generate uniformly distributed random 

numbers. Probability distributions are transformed 

using the aforementioned inverse transformation 

process to extract random numbers from probability 

distributions other than the uniform distribution.

Fig. 5. Form of probability density function (left), 
Cumulative distribution function (middle), and Inverse 

cumulative distribution function (right) in normal distribution

This is the inverse transformation method, which 

uses the inverse cumulative distribution function to 

convert random numbers generated from a uniform 

distribution into a different probability distribution and 

generate random numbers with the desired probability 

distribution. Therefore, the horizontal axis of the 

inverse cumulative distribution function is divided into 

n equal widths between 0 and 1, and random numbers 

are extracted for each interval to change the 

probability distribution using LHS in the program, as 

shown in Fig. 6. Then, through the inverse cumulative 

distribution function, extracted sample values, which 

are converted to the probability distribution to apply, 

can be obtained by pairing each with the y-axis[11].

Fig. 6. Transform using Inverse cumulative distribution 
function.

In this study, an algorithm using the LHS method 

was implemented in Matlab computer software 

(MathWorks, USA, R2023a Update2) [12] for 

computational simulation for random sampling owing 

to the characteristics of the Monte Carlo method. The 

radiochronometry algorithm in the program proceeds 

as shown in Fig. 7 and is divided into two main 

steps: radioactivity calculation and radiochronometry 

calculations.

Fig. 7. Computer simulation uncertainty estimation 
process.
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First, the value with uncertainty in Equation (1), 

which is derived on the Bateman equation, is the 

constant λ, and each time a set of samples is 

calculated, the value of λ within the uncertainty range 

is randomly sampled by the LHS method to replace 

the previous constant value of λ to calculate the 

activity ratio of the two nuclides selected as signature 

nuclides over time. Then, time t was estimated using 

the "vpasolve()" function[13], which finds an 

approximate solution to a given equation using input 

values within Matlab, given an activity ratio, R, 

analyzed for the selected radionuclide. The activity 

ratio, R, is also a value with uncertainty, and each 

time one set of samples is calculated. The R value 

within the uncertainty range is randomly sampled 

through the LHS method, and the radiochronometry 

results corresponding to the set number of sample sets 

are collected and statistically analyzed to calculate the 

new standard deviation and variance to derive the 

uncertainty.

Ⅲ. RESULT

1. Nuclear material radiochronometry uncertainty

model analysis

The mathematical model presented in Section 2 was 

evaluated. The uncertainty estimation model was 

examined by using the Monte Carlo and LHS 

methods, and the uncertainty estimation results were 

analyzed by using the algorithm.

1.1. Mathematical method uncertainty model 

analysis

The sensitivity of the calculations for uncertainty 

estimation based on the Bateman equation was 

analyzed. Analysis of the sensitivity equations (6) - 

(8) revealed that each sensitivity coefficient shows a 

unique change depending on the sensitivity factor, as 

shown in Fig. 8. The common factor is that the 

sensitivity coefficient infinitely increases in the radial 

equilibrium interval.

Fig. 8. Sensitivity coefficient and radial equilibrium 
graph.

As a result of the change in the contribution rate 

using Equations (9) - (11) assuming an uncertainty of 

1% for each factor (R, λ1, and λ2), the uncertainty 

contribution of λ1 is initially as high as 50%. 

However, over time, the uncertainty contribution of 

the nuclide ratio, R, becomes dominant, as presented 

in Table 1. The decay constants of the parent nuclide 

have a greater impact than the daughter nuclide, and 

the contribution of R increases with time.

Table 1. Contribution rate by Radiochronometry uncertainty

factor(230Th/234U)

Time(year) λ1
Contribution rate

λ2
Contribution rate

R
Contribution rate

1 52.8660% 0.0000% 47.1339%

10 52.8653% 0.0000% 47.1346%

100 52.8590% 0.0000% 47.1409%

1,000 52.7956% 0.0000% 47.2043%

10,000 52.1491% 0.0011% 47.8497%

100,000 44.2086% 1.1389% 54.6524%

1,000,000 0.8120% 0.0000% 99.1878%

The reason for the temporary increase in λ2 at 

100,000 years in Table 1 is that the sensitivity 

coefficient of each factor increases as it approaches 

the radial equilibrium interval, as depicted in Fig. 8. 

As λ1 shows a sharp change after approaching the 

equilibrium activity ratio and λ2 slowly increases, the 

temporary rise may have been caused by the 
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preceding effect of increasing sensitivity. The reason 

for the sharp change in R and λ1 when changing from 

100,000 to 1,000,000 years in Table 1 is that the 

sensitivity coefficient infinitely increases toward the 

radial equilibrium interval, as shown in Fig. 8. As the 

rate of increase in R is relatively higher, the decay 

constant is underestimated by the synthetic uncertainty 

characteristic because the error synthesis converges to 

a large factor in the uncertainty estimation calculation 

based on the Bateman equation. As the uncertainty in 

the decay constant is 1% or less and is a fixed 

analytical value, the uncertainty in the nuclide ratio, 

R, of the signature nuclide from the actual analysis is 

determined to be an important factor in determining 

the uncertainty in radiochronometry.

Fig. 9. Uncertainty change graph according to 
signature nuclides.

The uncertainty in radiochronometry based on 

Equation (5) depends on the radial equilibrium 

properties of the two nuclides chosen for signature 

nuclides, with nuclides that take a long time to 

equilibrate maintaining a low uncertainty for a long 

period of time, while nuclides that rapidly equilibrate 

are characterized by a spike in the uncertainty in a 

short period of time. The left graph in Fig. 9 shows 

the uncertainty evolution with 228Th/232U as the 

signature nuclide, with uncertainties exceeding 50% at 

times of 20 years or less because radial equilibrium 

appears quickly, whereas the uncertainty is less than 

10% over approximately 100,000 years with 230Th/234U 

as the signature nuclide.

As the half-life uncertainty factor characteristics and 

radial equilibrium characteristics of nuclides differ 

depending on the signature nuclide, the sensitivity, 

contribution rate, and radiochronometry range of each 

uncertainty estimation contributor should be 

considered in the radiochronometry uncertainty 

estimation.

1.2. Monte Carlo and LHS method uncertainty 

model analysis

To compare the reliability of the Monte Carlo 

method and the LHS, the convergence of each method 

to the original distribution when sampling is compared 

when the probability distribution is normal, as shown 

in Fig. 10 [14-16]. The left side of Fig. 10 shows a 

comparison of the Monte Carlo and LHS methods for 

100 samples, with the Monte Carlo method showing 

less convergence to the original distribution to the 

point where the original distribution is unrecognizable 

when the number of samples is small. On the right is 

a comparison of the Monte Carlo and LHS methods 

for 10,000 samples, and while both methods are 

normally distributed, the LHS method is relatively 

more convergent to the normal distribution than the 

Monte Carlo method. The convergence rate of the 

Monte Carlo method and the LHS method 

theoretically approaches the classical distribution as 

the sample size increases. However, studies have 

shown that the number of samples (n) squared of the 

number of samples (n2) in the LHS method is 

required to achieve accuracy in the Monte Carlo 

method using the LHS method[17].
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Fig. 10. Comparison of convergence between MC and 
LHS methods in normal distribution.

(100 samples left and 10,000 samples right)

The standard deviation of the uncertainty estimation 

results as a function of the number of samples 

(iterations) of the LHS method is analyzed to examine 

the convergence of the distribution as the number of 

samples (iterations) of the computational simulation 

method increases. Table 2 lists the radiochronometry 

results and the standard deviation of the results as a 

function of the number of iterations (number of 

samples) using the LHS method. For radiochronometry, 

the signature nuclides 230Th/234U, an activity ratio of 

0.001, a nuclide analysis uncertainty of 10% for 230Th 

and 234U, and an age of 109.208 years were used.

Table 2. Standard deviation of uncertainty results 
according to the number of repetitions

Number 
of samples

1st 2nd 3rd 4th 5th
Ave
-rage

Standard 
deviation

10 21.20 21.49 25.98 19.38 24.20 22.45 2.62

20 20.98 22.92 21.59 21.04 21.99 21.70 0.80

50 21.61 21.61 22.82 21.54 21.71 21.86 0.54

100 21.84 22.90 21.85 21.62 22.11 22.06 0.50

200 21.91 22.17 21.89 21.86 21.88 21.93 0.14

As the number of samples increases, as shown in 

Table 2, the results are closer to a uniform value with 

a small standard deviation, which can be plotted in 

Fig. 11, showing that the standard deviation 

logarithmically decreases as the number of iterations 

increases. Increasing the number of iterations has a 

large impact on accuracy in intervals where the 

standard deviation rapidly decreases, but the impact 

decreases in later intervals.

Fig. 11. Variation of standard deviation according to 
the number of repetitions.

The computation time increases as the number of 

samples (iterations) increases, such the appropriate 

number of iterations should be set for efficient 

uncertainty estimation. As described in Section 3.1.1, 

whether the same tendency of uncertainty evolution 

with time was observed in the method using 

computational simulated random sampling was 

analyzed, where the uncertainty infinitely increased as 

the activity ratio of the signature nuclide approached 

radiometric equilibrium in the mathematical model[1].

Fig. 12. Uncertainty changes according to changes in 
radioactivity ratio of LHS method (left) and mathematical 

model method (right).
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Fig. 12 shows a graph of the uncertainty curve of 

the radiochronometry results derived from the LHS 

method and the mathematical modeling method as a 

function of the change in activity ratio. For 

radiochronometry, the analysis uncertainty of signature 

nuclides 230Th/234U, 230Th, and 234U was set at 1% 

each, and the number of samples was set at 200. As 

shown in Fig. 12, both the LHS and mathematical 

model methods showed the same tendency as the 

equations and algorithms used in the radiochronometry 

process. As the radial equilibrium ratio increased and 

approached radial equilibrium, the uncertainty of the 

LHS method became relatively higher compared to 

the mathematical modeling method. This suggested 

that the impact of the uncertainty in the decay 

constant, which was underestimated in the previous 

mathematical modeling method, was appropriately 

reflected in the uncertainty. However, the maximum 

activity ratio of the radial equilibrium of the signature 

nuclides 230Th/234U was more than 1.44, allowing the 

mathematical model to estimate the uncertainty of the 

equilibrium up to the approximation of the 

equilibrium. However, for the LHS method, more than 

1.42 caused an algorithm error. As for the cause of 

the error, when the activity ratio R is a value with 

uncertainty and a value of 1.42 or more is entered in 

the process of sampling according to the uncertainty 

distribution, if a value of 1.44 or higher is sampled, 

the problem of not being able to find a solution 

occurs as it is outside the maximum activity ratio of 

the selected signature nuclide, requiring additional 

research to solve future problems.

Table 3. Comparison of the calculation results of Radiochronometry uncertainty using 230Th and 234U

Uranium CRM radioactivity ratio and Radiochronometry uncertainty

Institution Sample
radioactivity ratio

(
230

Th/
234

U)

Measurement relative 
uncertainty (%) Institutional 

uncertainty

Mathematical 
model method 

uncertainty

LHS method 
uncertainty

234
U

230
Th

CEA

NBS050 1 5.133E-04 0.5416 1.0304 0.65 0.653 0.654

NBS050 2 5.150E-04 0.5517 0.9782 0.65 0.632 0.642

NBS050 3 5.163E-04 0.5455 0.9554 0.65 0.621 0.627

JAEA

Sample 1 5.091E-04 0.1182 0.3071

0.30 0.300 0.296
Sample 2 5.075E-04 0.0313 0.2874

Sample 3 5.040E-04 0.0686 0.3656

Average 5.069E-04 0.3140 0.4391

LLNL

U050-1A 5.124E-04 0.2733 0.2549 0.22 0.217 0.216

U050-1B 5.145E-04 0.2733 0.2582 0.22 0.218 0.229

U050-1C 5.157E-04 0.2733 0.2490 0.22 0.217 0.211

U050-1D 5.160E-04 0.2733 0.2531 0.22 0.217 0.222

U050-2A 5.138E-04 0.2438 0.2562 0.21 0.206 0.205

U050-2B 5.146E-04 0.2438 0.2686 0.21 0.212 0.219

U050-2C 5.155E-04 0.2438 0.2490 0.21 0.204 0.217

U050-2D 5.160E-04 0.2438 0.2487 0.21 0.204 0.216

LANL

U050-1 5.157E-04 0.1983 0.8211 0.50 0.478 0.488

U050-2 5.223E-04 0.1578 0.7832 0.49 0.458 0.461

U050-3 5.209E-04 0.1948 0.7890 0.50 0.464 0.475

1) Half-life using mathematical model and LHS methods : λ234
U  = 2.8234×10-6/year, λ230

Th = 9.1954×10-6/year [7]

2) Half-life of use by institution : λ234
U = 2.8263×10-6/year, λ230

Th = 9.1580×10-6/year

3) CEA's Radiochronometry estimation uncertainty is expressed up to the first decimal place

4) JAEA's Radiochronometry estimation uncertainty is expressed as an average value

5) Number of repeated LHS methods (number of samples): 200

6) Comparative data: Table 1 of Reference [6] [Appendix 1]
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2. Validation of nuclear material radiochronometry 

uncertainty estimation results

In this study, the uncertainty estimation results of 

the LHS method were compared with the uncertainty 

estimation results of the mathematical model and 

radiochronometry proposed by international institutions 

to verify the uncertainty estimation results of the 

computer-simulated random sampling method. The 

uncertainty estimation results for the selection of 

signature nuclides in the two-generation and 

aforementioned relationships were analyzed.

2.1. Comparative analysis of uncertainty estimation 

results

The results of four institutions, LLNL (USA), Los 

Alamos National Laboratory (LANL, USA), Japan 

Atomic Energy Agency (JAEA, Japan), and 

Commissariat a l'Energie Atomique et aux Energies 

Alternatives (CEA, France), with the information of 
234U and 230Th, and the results of the estimation of 

the radiochronometry uncertainty in radiochronometry 

calculated by employing the mathematical model and 

LHS method were compared and shown in Table 3 to 

evaluate the results of the calculation of the 

uncertainty in radiochronometry[6]. The measurement 

uncertainties of 234U and 230Th were calculated using 

the measurement uncertainties of 234U and 230Th 

analyzed by each institution and the analytical results. 

The comparison shows that the results of the 

mathematical modeling and uncertainty estimation 

implemented by the LHS method are close to each 

other, as shown in Table 3. The expected differences 

are due to differences in decimal place handling and 

differences in the decay constants and uncertainties of 

the decay constants[18], which are the eigenvalues of 

the nuclides applied in the calculations by each 

institution.

2.2. Analysis of uncertainty estimation results for 

two generations or more

In this study, the LHS method was used to analyze 

the change in uncertainty when performing 

radiochronometry by selecting signature nuclides that 

differed by more than two generations in the decay 

chain, which were difficult to calculate using 

mathematical model equations. Table 4 lists the 

change in uncertainty for each generation by selecting 

signature nuclides (226Ra, 222Rn, and 218Po) within the 
234U decay chain that differ by more than two 

generations and entering an activity ratio that is 

approximately 100 years old. For radiochronometry, 

the analysis uncertainty of the 234U decay chain, 234U, 

and selected nuclides was set at 1% each, and the 

number of samples (n) was set at 500. As shown in 

Table 4, the half-life uncertainty of the calculation 

process is reflected as the related generation increases, 

confirming that the uncertainty result of each 

generation increases as the generation increases for 

the same radiochronometry t. However, uncertainty 

estimation beyond the second generation is currently 

lacking comparative validation data, and further 

research is needed for validation.

Table 4. Uncertainty of Radiochronometry of 2 generations
or more

Signature 
Nuclides

Generation

234
U to 

radioactive 
ratio

Radio
Chronometry 

estimate

Uncertainty 
(years)

226
Ra 1st 0.00195244%

100 year

0.73626

222
Rn 2nd 0.00195184% 0.74999

218
Po 3rd 0.00195184% 0.75828

Ⅳ. DISCUSSION

In this study, the uncertainty estimation methods for 

nuclear material and nuclear activity radiochronometry 

were investigated by using mathematical modeling and 

LHS methods to estimate the uncertainties that should 

be considered during the radiochronometry process 

and improve the reliability and accuracy of nuclear 

activity radiochronometry. A mathematical modeling 

method based on the Bateman equation for estimating 

the uncertainty in radiochronometry using the decay 
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chain of nuclear materials such as uranium or spent 

nuclear fuel was analyzed. An LHS method based on 

the Monte Carlo method of computational simulation 

with random sampling was developed to overcome the 

limitation of not being able to date more than one 

generation.

The characteristics of the calculation equation and 

sensitivity coefficient for uncertainty estimation of the 

Bateman equation-based mathematical model were 

determined. Each uncertainty component in the 

mathematical model increased in coefficient with time 

and diverged to infinity as it approached the radial 

equilibrium interval.

As the time to reach the radial equilibrium is 

different for each nuclide, the appropriate signature 

nuclide must be selected based on the nuclear material 

conditions for radiochronometry. Furthermore, the 

uncertainty in the decay constant of the parent nuclide 

and the nuclide ratio of the signature nuclide are the 

most influential factors in radiochronometry 

uncertainty, and the contribution rate of the 

uncertainty in the nuclide ratio increased as time 

increased. For the computational simulation sampling 

method, the Monte Carlo method and the LHS 

method were compared to derive the utility and 

characteristics of the LHS method. The LHS method 

is highly reliable with a small number of samples 

compared to the Monte Carlo method, and the 

standard deviation logarithmically decreased as the 

number of samples increased since the LHS method is 

also based on the Monte Carlo method. The LHS 

method also showed the same spike in uncertainty in 

the radial equilibrium interval as the mathematical 

model.

To compare the radiochronometry calculations, the 

results of the mathematical modeling and LHS 

methods were compared with those of the 

LLNL(Lawrence Livermore National Laboratory), 

LANL(Los Alamos National Laboratory), JAEA(Japan 

Atomic Energy Agency), and CEA(Commissariat a 

l'Energie Atomique et aux Energies Alternatives), and 

they showed similar performance in estimating the 

uncertainty in radiochronometry, even for two or more 

generations of signature nuclide relationships. 

However, It appears that there are factors beyond the 

differences in the accuracy of input values and 

differences in decimalization of output values are 

present. The computational simulation methods, when 

compared to the conventional Bateman equation-based 

approach, have reduced the underestimation of 

uncertainty factors such as decay constants. 

Furthermore, while the conventional Bateman 

equation-based approach faced challenges in 

estimating radiochronometry uncertainties in 

relationships beyond two steps due to the complexity 

of uncertainty formulas, the computational simulation 

methods enable the estimation of uncertainties in 

radiochronometry for relationships beyond two steps. 

Further research is needed to compare and verify the 

calculation results that account for complex decay 

chains and non-homogeneous conditions, reflecting the 

characteristics of realistic sample types and nuclear 

forensics environments.

The results of this study can be used as a research 

and development tool for identifying signature 

nuclides and developing related technologies in the 

field of nuclear forensics, as well as a tool for 

comparing and verifying the calculation results of 

operators during independent verification for spent 

nuclear fuel management in the future. Finally, it can 

be used as a basic technology in nuclear forensics for 

strengthening nuclear material control capabilities at 

domestic nuclear facilities and for independent and 

active participation in nuclear non-proliferation 

verification in neighboring countries.

Ⅴ. CONCLUSION

This study conducted research on a computational 

simulation-based uncertainty calculation algorithm for 

radiochronometry of Nuclear Materials. 
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Radiochronometry uncertainty increased over time and 

diverged to infinity as it approached the radial 

equilibrium interval. The Latin Hypercube Sampling 

method exhibited higher reliability with fewer samples 

compared to the Monte Carlo method. The 

computational simulation methods, when compared to 

the conventional Bateman equation-based approach, 

have reduced the underestimation of uncertainty 

factors such as decay constants. Furthermore, while 

the conventional Bateman equation-based approach 

faced challenges in estimating radiochronometry 

uncertainties in relationships beyond two steps due to 

the complexity of uncertainty formulas, the 

computational simulation methods enable the 

estimation of uncertainties in radiochronometry for 

relationships beyond two steps. In the future, this 

study can be applied as a foundational tool in the 

field of nuclear forensics, addressing complex decay 

chains and non-homogeneous conditions while 

reflecting the characteristics of realistic sample types 

and nuclear forensic environments.
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핵물질 연대추정을 위한 전산모사 불확도 계산 알고리즘

박재찬*, 전태훈, 정진영, 송정호

주식회사 비알앤씨

요  약

핵감식은 국제사회에서 핵물질 통제 및 핵비확산 검증에 필수적인 부분으로 인식되고 있다. 핵감식을 위

한 연대추정은 붕괴계열 특성 및 베이트만 방정식을 기반으로 핵물질의 정제 및 생산시기를 추정한다. 연

대추정을 위한 요소 중 붕괴상수와 핵종 수는 분석이나 반복 실험을 통해 도출된 통계로 불확도를 가지기 

때문에 연대추정의 결과도 불확도를 가진다. 본 연구는 기존의 베이트만 방정식 기반의 연대추정 불확도 

계산의 한계를 극복하기 위해 전산모사를 통한 불확도 계산 알고리즘을 연구하였다. 불확도 계산 결과 기

존 불확도 계산 방법과 동등한 수준의 결과가 나타났으며, 기존의 한계를 극복하여 2세대 이상의 불확도 

계산이 가능하였고 불확도 계산 중 붕괴상수의 과소평가도 개선되었다.
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