• 제목/요약/키워드: Mass Properties

검색결과 2,730건 처리시간 0.032초

초등학생의 스마트폰 사용과 체성분, 자세 및 근 속성에 대한 관계 분석 (Correlation between Smartphone Use, Body Composition, Posture, and Muscle Properties of Elementary School Students)

  • 박시은;박수경
    • 대한통합의학회지
    • /
    • 제8권3호
    • /
    • pp.11-20
    • /
    • 2020
  • Purpose : The purpose of this study was to determine the correlation between smartphone use, body composition, posture and muscle properties of elementary school students. Methods : A total of 22 healthy elementary school students in Daejeon, South Korea, participated in this study with informed consent. Smartphone use was evaluated with Smartphone addiction self-report scale (S-scale) for youth. Body composition (BMI, percent body fat, body fat mass, and skeletal muscle mass) was measured using Inbody. To assess posture, forward head posture and round shoulder posture were measured using Dartfish motion analysis. Muscle properties (muscle tone, stiffness, and elasticity) were measured on the upper trapezius, splenius capitis and sternocleidomastoid muscles using Myoton. To investigate the correlation between the main variables, Pearson correlation analysis was performed. Results : Disturbance of adaptive function, which is one of sub-component of S-scale, had a weak positive correlations with BMI (r=.538, p<.01), and body fat mass (r=.453, p<.05). However, scores of S-scale showed no correlation with posture and muscle properties. The correlation between posture and muscle properties was analyzed, and round shoulder posture revealed a weak positive correlation with respect to stiffness (r=.418, p<.05) and elasticity (r=.502, p<.05) of the sternocleidomastoid muscle. Conclusion : Scores of S-scale demonstrated a weak correlation with body composition (BMI) among elementary school students, whereas S-scale scores were not correlated with the posture and muscle properties. Further research is needed to identify and focus on potential high-risk user groups of elementary students who are more dependent upon smartphones.

수치해석에 의한 암반특성의 변화가 터널에 미치는 영향 (Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis)

  • 권순섭;이종선;김경효;이준우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Observational Properties of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

  • 정무건;윤성철
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.42.3-42.3
    • /
    • 2020
  • We investigate the observational properties of Wolf-Rayet stars, suggest the constraint of their mass-loss rate and apply our results to the observed progenitor candidates of Type Ib/Ic supernovae (iPTF13bvn and SN 2017ein). For this purpose, we adopt the WR star models with various mass-loss rates and wind terminal velocities. We obtain the high resolution spectra of those models at the pre-supernova phase using the radiative transfer code CMFGEN. We verify the optically faint property of SN Ic progenitors and show that the optical faintness is mainly originated by the high effective temperature at the photosphere. We also show that a simple analytic model for WR winds using a constant opacity can roughly predict the photospheric parameters. We show that the change of the mass-loss rate and the terminal wind velocity critically affects the optical luminosity. We find the optical luminosities of SN Ic progenitor models with our fiducial mass-loss rate prescription are fainter than the detection limits. We also suggest the mass-loss rate of WR stars may not exceed 2 times of our fiducial value by comparing our predictions with the detection limit of SN Ib/Ic progenitors. The directly observed progenitor candidate of iPTF13bvn can be explained by our SN Ib progenitor models. We find that the SN 2017ein progenitor candidate is too bright and too blue to be a SN Ic progenitor.

  • PDF

곡선보 요소의 고유치 해석에서 질량행렬의 영향 (The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements)

  • 유하상
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.

절리발달 암반터널의 불연속체해석과 연속체해석에 관한 고찰 (A Study on Discontinuum Analysis and Continuum Analysis of Tunnels in Jointed Rock Mass)

  • 조선규;김시격;김도훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1089-1094
    • /
    • 2004
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two method : discontinuous model and continuum model. Generally, distinct element method (DEM) is applied in discontinuous model, and finite element method (FEM) or finite difference method (FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests is conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC is utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

  • PDF

TWO COMPONENT MODEL OF INITIAL MASS FUNCTION

  • Hong, S.S.
    • 천문학회지
    • /
    • 제14권2호
    • /
    • pp.89-93
    • /
    • 1981
  • Weibull analyses given to the initial mass function (IMF) deduced by Miller and Scalo (1979) have shown that the mass dependence of IMF is an exp$[-{\alpha}m]$- form in low mass range while in the high mass range it assumes an exp$[-{\alpha}\sqrt{m}]/\sqrt{m}$-form with the break-up being at about the solar mass. Various astrophysical reasonings are given for identifying the exp$[-{\alpha}m]$ and exp$[-{\alpha}\sqrt{m}]/\sqrt{m}$ with halo and disk star characteristics, respectively. The physical conditions during the halo formation were such that low mass stars were preferentially formed and those in the disk high mass stars favoured. The two component nature of IMF is in general accord with the dichotomies in various stellar properties.

  • PDF

Definition and calculation method of modal effective mass of asymmetric fluid-structure interaction system for seismic analysis

  • Yong-Hwa Heo;Jong-Oh Sun;Gyeong Ho Kim;Yeonseok Choo
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4307-4316
    • /
    • 2023
  • In this paper, modal effective mass for asymmetric fluid-structure interaction system is defined and equations for its calculation is derived. To establish consistency, modal effective mass in symmetric structure only system is briefly reviewed, followed by a definition of the modal effective mass in asymmetric system. The equations for calculating modal effective mass in asymmetric system are derived by utilizing the properties of left and right eigenvectors. To simplify the equations, the assumption is made that the mass matrix is only affected by the fluid. The simplified equation is then compared to the equation already used in ANSYS. Finally, the validity of the modal effective mass definition and derivation in this paper is demonstrated through a simple example.

An Asymptotic Solution and the Green's Function for the Transverse Vibration of Beams with Variable Properties

  • 김용철
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.34-38
    • /
    • 2010
  • An analytical solution procedure for the dynamic response of beams with variable properties is developed by using an asymptotic solution and the Green's function. This asymptotic closed form solution is derived for the transverse vibration of beams under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is still found to be very accurate even in the case of large variation, such as step change in cross-section, mass, and tension. Therefore, this derived asymptotic closed form solution and the Green's function can be easily applied to find dynamic responses for various kind of beam vibration problems.

고로슬래그와 폴리카르본산계 유기 혼화제를 첨가한 Belite-rich Cement 모르타르 유동특성 (Rheology Properties of Belite-rich Cement Mortar Added Blastfurnace Slag and Polycarbonate-based Superplasticizer)

  • 송종택;송종택;조현태;황인수;박춘근
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.145-151
    • /
    • 2000
  • In order to investigate the rheological properties of belite-rich cement(BRC) added polycarbonate-based superplasticizer and blastfurnace slags which have different blaines at 4500, 6000 and 8000$\textrm{cm}^2$/g, the change of minislumps and mortar slumps are measured with time. The rheological properties improve as specific surface area of added slag decreases or amount of polycarbonate-based superplasticizer increases. The slump loss can be controlled effectively by the steric hinderance effect of polycarbonate-based superplasticizer. According to the results, when mix proportion of the mortar is 1.5% mass content of superplasticizer and 30% mass addition of blastfurnace slag which blaine is 4500$\textrm{cm}^2$/g, the best mortar slump can be achieved without any significant segregation of materials.

  • PDF

선내 탑재 마운팅 장비의 동특성에 관한 실험적 연구 (An Experimental Study on the Dynamic Characteristics of Onboard Machinery with Resilient Mounts)

  • 김극수;최수현
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.28-33
    • /
    • 2003
  • This study is performed to evaluate and design the dynamic characteristics of the onboard machinery with resilient mounts. To avoid resonance with onboard machinery and external force, it is necessary to calculate natural frequencies of the resilient mounting system more accurately. Natural frequencies of on board machinery are determined by rigid body properties(mass, moment of inertia, center of mass) of machinery and stiffness of mounts. But it is very difficult to calculate rigid body properties theoretically. And stiffness properties of rubber mounts vary with dynamic displacement, pre load, frequency and temperature, and so on. In this study, we have identified rigid body properties using experimental modal analysis and estimated dynamic stiffness of rubber mount for onboard machinery using measured vibration response during seatrial. We measured displacement excitation through deck under mounts and evaluated relationship between modes of resilient mounting system and main excitation sources of a ship.