• Title/Summary/Keyword: Markov-Switching Model

Search Result 54, Processing Time 0.027 seconds

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

Oil Price Forecasting : A Markov Switching Approach with Unobserved Component Model

  • Nam, Si-Kyung;Sohn, Young-Woo
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • There are many debates on the topic of the relationship between oil prices and economic growth. Through the repeated processes of conformations and contractions on the subject, two main issues are developed; one is how to define and drive oil shocks from oil prices, and the other is how to specify an econometric model to reflect the asymmetric relations between oil prices and output growth. The study, thus, introduces the unobserved component model to pick up the oil shocks and a first-order Markov switching model to reflect the asymmetric features. We finally employ unique oil shock variables from the stochastic trend components of oil prices and adapt four lags of the mean growth Markov Switching model. The results indicate that oil shocks exert more impact to recessionary state than expansionary state and the supply-side oil shocks are more persistent and significant than the demand-side shocks.

The Behavior of the Term Structure of Interest Rates with the Markov Regime Switching Models (마코프 국면전환을 고려한 이자율 기간구조 연구)

  • Rhee, Yu-Na;Park, Se-Young;Jang, Bong-Gyu;Choi, Jong-Oh
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2010
  • This study examines a cointegrated vector autoregressive (VAR) model where parameters are subject to switch across the regimes in the term structure of interest rates. To employ the regime switching framework, the Markov-switching vector error correction model (MS-VECM) is allowed to the regime shifts in the vector of intercept terms, the variance-covariance terms, the error correction terms, and the autoregressive coefficient parts. The corresponding approaches are illustrated using the term structure of interest rates in the US Treasury bonds over the period of 1958 to 2009. Throughout the modeling procedure, we find that the MS-VECM can form a statistically adequate representation of the term structure of interest rate in the US Treasury bonds. Moreover, the regime switching effects are analyzed in connection with the historical government monetary policy and with the recent global financial crisis. Finally, the results from the comparisons both in information criteria and in forecasting exercises with and without the regime switching lead us to conclude that the models in the presence of regime dependence are superior to the linear VECM model.

Predicting Recessions Using Yield Spread in Emerging Economies: Regime Switch vs. Probit Analysis (금리스프레드를 이용한 신흥경제 국가의 불황 예측: 국면 전환 모형 vs. 프로빗 모형)

  • Park, Kihyun;Mohsin, Mohammed
    • International Area Studies Review
    • /
    • v.16 no.3
    • /
    • pp.53-73
    • /
    • 2012
  • In this study we investigate the ability of the yield spread to predict economic recessions in two Asian economies. For our purpose we use the data from two emerging economies (South Korea and Thailand) that are also known for their openness in terms of exports and imports. We employ both two-regime Markov-Switching model (MS) and three-regime MS model to estimate the probability of recessions during Asian crisis. We found that the yield spread is confirmed to be a reliable recession predictor for Thailand but not for South Korea. The three-regime MS model is better for capturing the Asian financial crisis than two-regime MS model. We also tried to find the duration of economic expansions and recessions. We tested the hypothesis of asymmetric movements of business cycles. The MS results are also compared with that of the standard probit model for comparison. The MS model does not significantly improve the forecasting ability of the yield spread in forecasting business cycles.

FSM State Assignment for Low Power Dissipation Based on Markov Chain Model (Markov 확률모델을 이용한 저전력 상태할당 알고리즘)

  • Kim, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • In this paper, a state assignment algorithm was proposed to reduce power consumption in control-flow oriented finite state machines. The Markov chain model is used to reduce the switching activities, which closely relate with dynamic power dissipation in VLSI circuits. Based on the Markov probabilistic description model of finite state machines, the hamming distance between the codes of neighbor states was minimized. To express the switching activities, the cost function, which also accounts for the structure of a machine, is used. The proposed state assignment algorithm is tested with Logic Synthesis Benchmarks, and reduced the cost up to 57.42% compared to the Lakshmikant's algorithm.

  • PDF