DOI QR코드

DOI QR Code

ON GEOMETRIC ERGODICITY OF AN AR-ARCH TYPE PROCESS WITH MARKOV SWITCHING

  • Published : 2004.03.01

Abstract

We consider a nonlinear AR-ARCH type process subject to Markov-switching and give sufficient conditions for geometric ergodicity of the process. Existence of moments is also obtained.

Keywords

References

  1. Statist. Probab. Lett. v.22 On geometric ergodicity of nonlinear autoregressive models R.N.Bhattacharya;C.Lee https://doi.org/10.1016/0167-7152(94)00082-J
  2. J. Econometrics v.52 Arch modeling in finance T. Bollerslev;R.T.Chou;K.F.Kroner https://doi.org/10.1016/0304-4076(92)90064-X
  3. Ann. Prob. v.20 Strict stationarity of generalized autoregressive processes P.Bougerol;N.Picard https://doi.org/10.1214/aop/1176989526
  4. Econometrica v.50 Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation R.F.Engle https://doi.org/10.2307/1912773
  5. J. Econometrics v.102 Stationarity of multivariate Markov switching ARMA models C.Francq;J-M.Zakoian https://doi.org/10.1016/S0304-4076(01)00057-4
  6. J. Time Ser. Anal. v.22 no.2 Conditional heteroskedasticity driven by hidden Markov chains C.Francq;M.Roussignol;J-M.Zakoian https://doi.org/10.1111/1467-9892.00219
  7. Ann. Prob. v.2 no.2 A Lyapounov bound for solutions of the Poisson equation P.W.Glynn;S.P.Meyn
  8. Econometrica v.57 no.2 A new approach to the economic analysis of nonstationary time series and business cycle J.D.Hamilton https://doi.org/10.2307/1912559
  9. J. Econometrics v.70 Specification testing in Markov switchin time series models. J.D.Hamilton https://doi.org/10.1016/0304-4076(69)41686-9
  10. Bull. Korean Math. Soc. v.38 no.3 Strict stationarity and functional central limit theorem for ARCH/GARCH models O.Lee;J.Kim
  11. Probabilistic properties of a nonlinear ARMA processes with Markov switching O.Lee
  12. Irreducibility of ARMA(p,q) process with Markov switching O.Lee
  13. On strict stationarity of nonlinear ARMA processed with nonlinear GARCH innovations O.Lee
  14. J. Appl. Econometrics v.11 On a double threshold autoregressive conditional heteroscedastic time series model C.W.Li;W.K.Li https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<253::AID-JAE393>3.0.CO;2-8
  15. J. Appl. Probab. v.36 On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model S.Ling https://doi.org/10.1239/jap/1032374627
  16. J. Econometrics v.106 Stationarity and existence of moments of a family of GARCH processes S.Ling;M.McAleer https://doi.org/10.1016/S0304-4076(01)00090-2
  17. J. Statist. Plann. Inference v.62 On a threshold autoregression with conditional heteroscedastic variances J.Liu;W.Li;C.W.Li https://doi.org/10.1016/S0378-3758(96)00196-6
  18. Econometric theory v.11 Nonparametric estimation and identification of nonlinear ARCH time series E.Masry;D.Tjostheim https://doi.org/10.1017/S0266466600009166
  19. J. Time Ser. Anal. v.15 Statistical analysis of economic time series via Markov switching models R.McCulloch;R.Tsay https://doi.org/10.1111/j.1467-9892.1994.tb00208.x
  20. Markov Chains and Stochastic Stability S.P.Meyn;R.L.Tweedie
  21. Adv. Appl. Probab. v.22 Nonlinerar time series and Markov chains D.Tjostheim https://doi.org/10.2307/1427459
  22. Nonlinear Time Series: A dynamical system approach H.Tong
  23. J. Appl. Probab. v.25A Invariant Measures for Markov chains with no irreducibility assumptions R.L.Tweedie
  24. Econometric Theory v.16 Some properties of vector auroregressive with Markov-switching coefficients M.Yang https://doi.org/10.1017/S026646660016102X
  25. Statist. Probab. Lett. v.52 no.3 On square integrability of an AR precess with Markov switching J.F.Yao https://doi.org/10.1016/S0167-7152(00)00206-6
  26. Adv. Appl. Probab. v.32 On stationarity of nonlinear AR processes with Markov switching J.F.Yao;J.G.Attail https://doi.org/10.1239/aap/1013540170
  27. J. Time Ser. Anal. v.22 no.1 Autocovariance structure of Markov regime switching models and model selection J.Zhang;R.Stine https://doi.org/10.1111/1467-9892.00214

Cited by

  1. Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach vol.41, pp.2, 2014, https://doi.org/10.1080/02664763.2013.839129
  2. On geometric ergodicity of CHARME models vol.31, pp.3, 2010, https://doi.org/10.1111/j.1467-9892.2010.00651.x
  3. On geometric ergodicity of skewed—SVCHARME models vol.84, 2014, https://doi.org/10.1016/j.spl.2013.10.008
  4. Markov switching model of nonlinear autoregressive with skew-symmetric innovations vol.89, pp.4, 2019, https://doi.org/10.1080/00949655.2018.1563089