DOI QR코드

DOI QR Code

IRREDUCIBILITY OF ARMA(p,q) PROCESS WITH MARKOV SWITCHING

  • Lee, Oe-Sook (Department of Statistics Ewha Womans University)
  • Published : 2006.07.01

Abstract

We consider a autoregressive moving average process of order p and q with Markov switching coefficients and find sufficient conditions for irreducibility of the process. Identifying small sets is also examined.

Keywords

References

  1. H. Z. An and S. G. Chen, it A note on the ergodicity of nonlinear autoregressive model, Statistics and Probability Letters 34 (1997), 365-372 https://doi.org/10.1016/S0167-7152(96)00204-0
  2. R. N. Bhattacharya and C. Lee, On geometric ergodicity of nonlinear autoregressive models, Statistics and Probability Letters 22 (1995), 311-315 https://doi.org/10.1016/0167-7152(94)00082-J
  3. D. Cline and H. Pu, Veryfying irreducibility and continuity of a nonlinear time series, Statistics and Probability Letters 40 (1998), 139-148 https://doi.org/10.1016/S0167-7152(98)00081-9
  4. M. Evan and K. Lewis, Do expected shifts in inflation affect estimates of the long-run Fisher relation'?, Journal of Finance 50 (1995), 225-253 https://doi.org/10.2307/2329244
  5. C. Francq and J-M. Zakoian, Stationarity of multivariate Markov switching ARMA models, Journal of Econometrics 102 (2001), 339-364 https://doi.org/10.1016/S0304-4076(01)00057-4
  6. C. Francq, M. Roussignol, and J-M. Zakoian, Conditional heteroskedasticity driven by hidden Markov chains, Journal of Time Series Analysis 22 (2001), no.2, 197-220 https://doi.org/10.1111/1467-9892.00219
  7. J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and business cycle, Econometrica 57 (1989), no. 2, 357-384 https://doi.org/10.2307/1912559
  8. J. D. Hamilton, Specification testing in Markov switching time series models, Journal of Econometrics 70 (1996), 127-157 https://doi.org/10.1016/0304-4076(69)41686-9
  9. B. E. Hansen, The likelihood ratio test under nonstandard conditions: Testing the Markov switching model of GNP, Journal of Applied Econometrics 7 (1992), S61-S82 https://doi.org/10.1002/jae.3950070506
  10. U. Holst, G. Lindgren, J. Holst, and M. Thuvesholmen, Recursive estimation in switching autoregressions with a Markov regime, Journal of Time Series Analysis 15 (1994), 489-506 https://doi.org/10.1111/j.1467-9892.1994.tb00206.x
  11. P. Lam, The Hamilton model with a general autoregressive component: Estimation and comparison with other models of economic time series, Journal of Monetary Economics 26 (1990), 409-432 https://doi.org/10.1016/0304-3932(90)90005-O
  12. S. Ling, On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model, Journal of Applied Probability 36 (1999), 688-705 https://doi.org/10.1239/jap/1032374627
  13. R. McCulloch and R. Tsay, Statistical analysis of economic time series via Markov switching models, Journal of Time Series Analysis 15 (1994), 523-539 https://doi.org/10.1111/j.1467-9892.1994.tb00208.x
  14. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, London, 1993
  15. H. Tong, Nonlinear Time Series: a Dynamical System approach, Oxford University Press, Oxford, 1990
  16. R. L. Tweedie, Criteria for rates of convergence of Markov chain with application to queueing theory, in J.F.C. Kingman and G.E.H. Reyter, eds., Papers in Probability, Statistics and Analysis, Cambridge University Press, Cambridge (1983)
  17. M. Yang, Some properties of vector auroregressive processes with Markovswitching coefficients, Econometric Theory 16 (2000), 23-43
  18. J. F. Yao, On square integrability of an AR process with Markov switching, Statistics and Probability Letters 52 (2001), no. 3, 265-270 https://doi.org/10.1016/S0167-7152(00)00206-6
  19. J. F. Yao and J. G. Attali, On stationarity of nonlinear AR processes with Markov switching, Advances in Applied Probability 32 (2000), 394-407 https://doi.org/10.1239/aap/1013540170
  20. J. Zhang and R. Stine, Autocovariance structure of Markov regime switching models and model selection, Journal of Time Series Analysis 22 (2001), no. 1, 107-124 https://doi.org/10.1111/1467-9892.00214