References
- R. Azencott, Grandes deviations et applications, Ecole d'Ete de Probabilites de Saint Flour VIII-1978, Lect. notes in Math. Springer-Verlag 774 (1980), 1-176
- F. Chenal and A. Millet, Uniform large deviations for parabolic SPDEs and applications, Stochastic Process. Appl. 72 (1997), 161-186
- N. Cho, Large Deviation Principle for Diffusion Processes in a Conuclear Space, Commun. Korean Math. Soc. 20 (2005), no. 2, 381-393 https://doi.org/10.4134/CKMS.2005.20.2.381
- M. Freidlin, Random perturbations of reaction diffusion equations: the quasideterministic approach, Trans. Am. Math. Soc. 305 (1988), 665-697 https://doi.org/10.2307/2000884
- G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equations, Ann. of Probab. 24, (1996), 320-345 https://doi.org/10.1214/aop/1042644719
- D. Marquez-Carreras and M. Sarra, Large deviation principle for a stochastic heat equation, Elct. jour probab. 8 (2003), 1-39
- S. Peszat, Exponential Tail estimates for infinite- dimensional stochastic convolutions, Bulletin of the polish academy of science 40 (1992), 323-333
- S. Peszat, Large deviation principle for stochastic evolution equations, Probab. Theory relat. Fields 98 (1994), 113-136 https://doi.org/10.1007/BF01311351
- J. Walsh, J., An introduction to stochastic partial differential equations, Springer Lect. notes in mathematics 1180 (1986), 265-439
Cited by
- Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales 2017, https://doi.org/10.1016/j.spa.2017.09.011