• Title/Summary/Keyword: Markerless

Search Result 80, Processing Time 0.027 seconds

Markrerless augmented reality game development method utilizing the Unity engine and KUDAN engine -In the center of ther development case of 'Our neighborhood hero' (유니티와 KUDAN 엔진을 활용한 MARKERLESS 방식의 증강현실 게임개발 - '우리동네히어로'의 개발사례 중심으로)

  • Kim, Han-Ho;Jung, hyung-won
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.421-426
    • /
    • 2017
  • After the Pokemon game became popular, the popularity of the Augmented Reality game is higher than ever. Therefore, it is an important choice to use an engine to create an augmented reality game. It explains how to create an augmented reality game using Unity engine, which is one of the most used game engines in game development. We describe a method for implementing augmented reality optimized for games by selecting a MARKERLESS method that does not require a marker among the augmented reality techniques. In this paper, we propose a technique to create MARKERLESS augmented reality game using KUDAN AR engine which supports Unity engine and unity through 'Our Hero' project.

Real-time Markerless Facial Motion Capture of Personalized 3D Real Human Research

  • Hou, Zheng-Dong;Kim, Ki-Hong;Lee, David-Junesok;Zhang, Gao-He
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.129-135
    • /
    • 2022
  • Real human digital models appear more and more frequently in VR/AR application scenarios, in which real-time markerless face capture animation of personalized virtual human faces is an important research topic. The traditional way to achieve personalized real human facial animation requires multiple mature animation staff, and in practice, the complex process and difficult technology may bring obstacles to inexperienced users. This paper proposes a new process to solve this kind of work, which has the advantages of low cost and less time than the traditional production method. For the personalized real human face model obtained by 3D reconstruction technology, first, use R3ds Wrap to topology the model, then use Avatary to make 52 Blend-Shape model files suitable for AR-Kit, and finally realize real-time markerless face capture 3D real human on the UE4 platform facial motion capture, this study makes rational use of the advantages of software and proposes a more efficient workflow for real-time markerless facial motion capture of personalized 3D real human models, The process ideas proposed in this paper can be helpful for other scholars who study this kind of work.

Development of Cultural Contents using Auger Reality Based Markerless Tracking

  • Kang, Hanbyeol;Park, DaeWon;Lee, SangHyun
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • This paper aims to improve the quality of cultural experience by providing a three - dimensional guide service that enables users to experience themselves without additional guides and cultural commentators using the latest mobile IT technology to enhance understanding of cultural heritage. In this paper, we propose a method of constructing cultural contents based on location information such as user / cultural heritage using markerless tracking based augmented reality and GPS. We use marker detection technology and markerless tracking technology to recognize smart augmented reality object accurately and accurate recognition according to the state of cultural heritage, and also use Android's Google map to locate the user. The purpose of this paper is to produce content for introducing cultural heritage using GPS and augmented reality based on Android. It can be used in combination with various objects beyond the limitation of existing augmented reality contents.

Development of Augmented Reality Character System based on Markerless Tracking (마커리스 트래킹 기반 증강현실 캐릭터 시스템 개발)

  • Hyun, Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1275-1282
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, resulting in low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

Landmark Extraction for 3D Human Body Scan Data Using Markerless Matching (마커 없는 매칭을 활용한 3 차원 인체 스캔 데이터의 기준점 추출)

  • Yoon, Dong-Wook;Heo, Nam-Bin;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.163-167
    • /
    • 2009
  • 3D human body scan technique is known to be practically useful in industrial field as the technique becomes more precise and cheaper. Landmark extraction is essential for full utilization of the scan data. In this paper, we suggest an algorithm for automatic landmark extraction. For this purpose, we perform markerless matching to the target data using PCA analysis and quasi-Newton optimization. Landmarks are extracted from the topology of resulting body.

  • PDF

DEVELOPMENT OF VIRTUAL PLAYGROUND SYSTEM BY MARKERLESS AUGUMENTED REALITY AND PHYSICS ENGINE

  • Takahashi, Masafumi;Miyata, Kazunori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.834-837
    • /
    • 2009
  • Augmented Reality (AR) is a useful technology for various industrial systems. This paper suggests a new playground system which uses markerless AR technology. We developed a virtual playground system that can learn physics and kinematics from the physical play of people. The virtual playground is a space in which real scenes and CG are mixed. As for the CG objects, physics of the real world is used. This is realized by a physics engine. Therefore it is necessary to analyze information from cameras, so that CG reflects the real world. Various games options are possible using real world images and physics simulation in the virtual playground. We think that the system is effective for education. Because CG behaves according to physics simulation, users can learn physics and kinematics from the system. We think that the system can take its place in the field of education through entertainment.

  • PDF

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

Automated Markerless Analysis of Human Gait Motion for Recognition and Classification

  • Yoo, Jang-Hee;Nixon, Mark S.
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new method for an automated markerless system to describe, analyze, and classify human gait motion. The automated system consists of three stages: I) detection and extraction of the moving human body and its contour from image sequences, ii) extraction of gait figures by the joint angles and body points, and iii) analysis of motion parameters and feature extraction for classifying human gait. A sequential set of 2D stick figures is used to represent the human gait motion, and the features based on motion parameters are determined from the sequence of extracted gait figures. Then, a k-nearest neighbor classifier is used to classify the gait patterns. In experiments, this provides an alternative estimate of biomechanical parameters on a large population of subjects, suggesting that the estimate of variance by marker-based techniques appeared generous. This is a very effective and well-defined representation method for analyzing the gait motion. As such, the markerless approach confirms uniqueness of the gait as earlier studies and encourages further development along these lines.

Evaluation of CPU And RAM Performance for Markerless Augmented Reality

  • Tagred A. Alkasmy;Rehab K. Qarout;Kaouther Laabidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.44-48
    • /
    • 2023
  • Augmented Reality (AR) is an emerging technology and a vibrant field, it has become common in application development, especially in smartphone applications (mobile phones). The AR technology has grown increasingly during the past decade in many fields. Therefore, it is necessary to determine the optimal approach to building the final product by evaluating the performance of each of them separately at a specific task. In this work we evaluated overall CPU and RAM performance for several types of Markerless Augmented Reality applications by using a multiple-objects in mobile development. The results obtained are show that the objects with fewer number of vertices performs steady and not oscillating. Object was superior to the rest of the others is sphere, which is performs better values when processed, its values closer to the minimum CPU and RAM usage.

Application of Calibration Techniques to Enhance Accuracy of Markerless Surgical Robotic System for Intracerebral Hematoma Surgery (뇌혈종 제거 수술을 위한 무마커 수술 유도 로봇 시스템의 정확도 향상을 위한 캘리브레이션 기법)

  • Park, Kyusic;Yoon, Hyon Min;Shin, Sangkyun;Cho, Hyunchul;Kim, Youngjun;Kim, Laehyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • In this paper, we propose calibration methods that can be applied to the markerless surgical robotic system for Intracerebral Hematoma (ICH) Surgery. This surgical robotic system does not require additional process of patient imaging but only uses CT images that are initially taken for a diagnosis purpose. Furthermore, the system applies markerless registration method other than using stereotactic frames. Thus, in overall, our system has many advantages when compared to other conventional ICH surgeries in that they are non-invasive, much less exposed to radiation exposure, and most importantly reduces a total operation time. In the paper, we specifically focus on the application of calibration methods and their verification which is one of the most critical factors that determine the accuracy of the system. We implemented three applications of calibration methods between the coordinates of robot's end-effector and the coordinates of 3D facial surface scanner, based on the hand-eye calibration method. Phantom tests were conducted to validate the feasibility and accuracy of our proposed calibration methods and the surgical robotic system.