• Title/Summary/Keyword: Marine Corrosion

Search Result 686, Processing Time 0.025 seconds

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy (Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과)

  • Lee, Syung-Yul;Won, Jong-Pil;Park, Dong-Hyun;Moon, Kyung-Man;Lee, Myeong-Hoon;Jeong, Jin-A;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

Evaluation of Steel Corrosion of Slag Concrete by Half-cell Potential Method (반전지-전위 측정방법을 활용한 슬래그 콘크리트의 철근 부식 저항성능 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Rae-Hwan;Yoon, Min-Ho;Lee, Young-Wook;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.3-4
    • /
    • 2014
  • There is high probability of steel corrosion on the reinforced concrete exposed to marine environment by penetration of chloride ion. When making concrete structure with slag as admixture in marine environment, salt damage can be prevented. Therefore, this paper presents experimental results of steel corrosion resistance of slag concrete considering marine environment through half-cell potential method which is one of the nondestructive test. As a result of half-cell potential experiment, it was assumed that every specimen exposed to marine environment was not corroded, and as a result of destroying specimens, it was confirmed that there was no corrosion in specimens.

  • PDF

Evaluation on cavitation damage in sea water with shot peening stand-off distance for ALBC3 alloy (ALBC3 합금의 쇼트피닝 분사거리에 따른 해수 내 캐비테이션 손상 평가)

  • Han, Min-Su;Jang, Seok-Ki;Kim, Jong-Sin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.239-244
    • /
    • 2013
  • Marine equipment exposed to harsh environments requires not only excellent corrosion resistance but also improvement of physical characteristics against natural material degradation. With growing interests in ocean energy resources, the higher reliability for marine equipment has become more important in terms of material characteristics. ALBC3 alloy represents excellent corrosion resistance and is widely used in corrosive environments. However, cavitation damage occurs frequently due to its poor durability in high flow rate of marine environment. In this research, shot peening technology was employed as a surface modification with shot peening stand-off distance to mitigate cavitation damage. The effects of shot peening on extent of cavitation damage and weight loss were evaluated for both shot peened and non-peened specimens. The results revealed that the application of shot peeing decreased cavitation damage for all experimental conditions in comparison with the non-peened specimens. The optimum stand-off distance was determined to be 10 cm, since more than 35 % of cavitation damage reduction was observed.

Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening (동합금의 워터캐비테이션피닝에 의한 내구성과 부식특성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.184-190
    • /
    • 2012
  • Cu alloy is widely used for marine applications due to its excellent ductility and high resistance for corrosion as wells as cavitation. However, long term exposure of the material to marine environments may result in damages caused by cavitation and corrosion. Water cavitation peening has been introduced in order to improve resistance of Cu alloy to corrosion and cavitation. The technology induces compressive residual stress onto the surface, and thus enhances the fatigue strength and life. In this study, the characteristics of the material were investigated by using water cavitaiton peening technique, and results showed that 2 minutes of water cavitation peening indicated the considerable improvement in hardness. On the other hand, over 10 minutes of water cavitation peening accelerated damages to the surface. In the case of ALBC3, water cavitation peening in the range of 2 to 10 minutes has shown the excellent durability and corrosion resistance while minimizing surface damages.

Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water (Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구)

  • Han, Min Su;Prak, Jae Cheul;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.

Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor (침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Ki-Joon;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

Variation of Corrosion Properties on the Steel Surface by Environmental Changes in Shihwa Lake (시화호 환경 변화에 따른 강재 표면의 부식특성 변화)

  • Park, Jun-Mu;Lee, Seung-Hyo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.316-324
    • /
    • 2018
  • Harsh seawater environment is subdivided into marine atmosphere, splash zone, tidal zone, submerged zone and bottom of sea depending on the exposed part. Since corrosion rate depends on the conditions of the exposed parts, proper protection and maintenance for each parts are essential for long-term use of steel structures in seawater environment. For steel structures which were installed in Shiwha Lake, a special maintenance system is required to guarantee its long-term durability and safety. As the tidal power plant has recently been operated, the salinity has risen due to the rapid influx of seawater upstream into Sihwa Lake and the corrosion tendency of the structure is variable according to the water level fluctuation. In this study, corrosion properties of steel structures under water level fluctuation was evaluated by corrosion rate measurement, visual inspection and natural potential measurement and their durability and life management were discussed in view of the effect of variation in of seawater level fluctuations in Shihwa Lake.

Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments

  • Zhang, Xiaoyun;Liu, Ming;Lu, Feng;Liu, Minghui;Sun, Zhihua;Tang, Zhihui
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • Outdoor exposure tests using of 7B04 aluminium alloy samples including plate, tensile and various SCC samples were carried out in Tuandao station, Shandong province (East of China) and Wanning station, Hainan province (South of China). Corrosion characteristics including weight loss, microstructure, tensile strength and SCC susceptibility were investigated. The corrosion rates in Tuandao and Wanning showed high to low and the corrosion rates changed to the following equation of $w=at^b$ (b<1). The corrosion of 7B04 aluminium alloy in Wanning was more serious than that in Tuandao. Pitting appeared at early stage of expose test, and it can be changed to general corrosion with test time extension. The 7B04 aluminium alloy of which specimen shapes are forging and thick plate also showed SCC (Stress corrosion cracking) in the marine atmosphere. The higher SCC sensitivity was observed in Wanning station than in Tuandao station. The 7B04 aluminium alloy with a high stress level was more sensitive to SCC. Intergranular and transgranular or a mixed mode of cracking can be observed in different marine exposure.

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.