• Title/Summary/Keyword: Marchese model

Search Result 3, Processing Time 0.013 seconds

Comparison of Linear-Quadratic Model, Incomplete-Repair Model and Marchese Model in Fractionated Carbon Beam Irradiation (탄소 빔 분할조사 시 Linear-Quadratic모델, Incomplete-Repair모델, Marchese 모델 결과 비교)

  • Choi, Eunae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.417-420
    • /
    • 2015
  • We obtained Surviving Fraction (SF) after irradiation carbon beam to compare the applicability of the Linear-Quadratic model, Incomplete Repair model, Marchese model. Mathematica software(ver 9.0) used to calcurate parameters and compared result. LQ model could not explain the entire response of fractionated carbon beam irradiation. It becomes necessary to construct models that extend the LQ model of conventional radiotherapy for the carbon beam therapy. By combining both Potentially Lethal Damage Repair (PLDR) and Sublethal Damage Repair (SLDR) a new LQ model can develop that aptly modeled the cellular response to fractionated irradiation.

Change of Surviving Fractions based on the Recovery of Potentially Lethal Damage in HFL-I Cell Line (HFL-I 세포의 잠재적 치사 손상 회복에 따른 세포 생존율 변화)

  • Choi, Eunae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.147-151
    • /
    • 2017
  • Potentially lethal damage repair (PLDR) in HFL-I was investigated by delayed plating experiments. The surviving fraction data were fitted to the linear Quadratic equation ($LogSn=-n{\gamma}({\alpha}d+{\beta}d^2$) where ${\gamma}=1$ for immediate plating). And a repair factor ${\gamma}$ was developed to compare survival for immediate and delayed plating. When we only took into account the repair factor of PLDR ${\gamma}$ which was derived from the delay assay, the cell survival response th fractionated carbon ion irradiation was not fully matched. This gap suggested that consideration of another repair process is necessary. So this suggests that the various repair process plays an important role in the fractionated irradiations.

Comparison of Parameter Using the Repair Survival Model Irradiated High-LET (LET 증가에 따른 회복 생존 모델의 파라미터 값 비교)

  • Choi, Eunae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.177-181
    • /
    • 2017
  • Dose response curves using absorbed dose to the biological effect are usually available in case of conventional X beam. However, absorbed dose is not consider in treatment planning for carbon beam such as heavy ions. Because the biological effects also depend on other quantities such as the local variation, which is often characterized by the linear energy transfer (LET). So LQ model cannot explain the entire response of fractionated carbon beam irradiation. The variation in LET with penetration depth leads to substantial differences in biological effect of carbon beam. And it is therefore essential in treatment planning to calculate not only the absorbed dose but also the LET to estimate the biological outcome of the radiation of interest. LET variation plays an important role in the fractionated irradiations. It is suggested that consideration of LET is necessary in biophysical model.