• Title/Summary/Keyword: Mapping error

Search Result 449, Processing Time 0.026 seconds

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

Concentration Error Assessment by Comparison of Solar Flux Measurement and Modeling (집광 열유속 측정과 모델링의 비교를 통한 집광 오차 평가)

  • Chai, Kwan-Kyo;Yoon, Hwan-Ki;Lee, Hyun-Jin;Lee, Seong-Uk;Kim, Si-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.82-90
    • /
    • 2013
  • Concentration errors critically affect the performance of solar concentrator, so their evaluation is important to the concentrated solar power technology. However, the evaluation is very challenging because error sources are various and not easy to measure individually. Therefore, the integrated effect of concentration errors is often more interesting and useful for large-scale applications. In the present work, we analytically investigate and classify various concentration error sources and then explain that the effect of various concentration errors can be represented in terms of a root mean square value of reflector surface slope error. We present an indirect approach to assessing the reflector surface slope error by comparing solar flux measurement data with modeling calculations. We apply the approach for solar furnaces with different thermal capacity and investigate its advantages and disadvantages.

The Effects of the Level of Enrichment for Analogies upon Students' Mapping and Conceptual Understanding in Concept Learning about Boyle's Law (보일의 법칙에 대한 개념 학습에서 비유의 부연 수준이 학생들의 대응 관계 이해 및 개념 이해에 미치는 영향)

  • Kim, You-Jung;Kim, Kyung-Sun;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.248-256
    • /
    • 2010
  • This study investigated the effects of the level of enrichment for analogies upon students' mapping, conceptual understanding, and the types of mapping errors in concept learning about Boyle's Law. Analogical reasoning ability test was administered and the score was used as a blocking variable. Three types (simple, enriched, and extended analogies) of learning materials according to the level of enrichment for analogies were studied by randomly assigned middle school students, and a conceptions test and a mapping test were administered immediately. The retention tests of both were administered four weeks later. Analyses of the results revealed that there was no main effect in the level of enrichment for analogies, but there was interaction effect with analogical reasoning ability in the post test on mapping. And the score of enriched analogy group was significantly higher than those of simple analogy group, but the score differences among three groups were not significant in the retention test on conceptual understanding. The frequency of the total mapping errors in the simple analogy group was the highest, and the frequencies of most types of mapping errors in the enriched and the extended analogy groups were less than those in the simple analogy group. There were also some differences in the frequencies of mapping errors with respect to the level of analogical reasoning ability. Therefore, these results will help science teachers plan and practice instructions using analogy.

Performance Comparison of Taylor Series Approximation and CORDIC Algorithm for an Open-Loop Polar Transmitter (Open-Loop Polar Transmitter에 적용 가능한 테일러 급수 근사식과 CORDIC 기법 성능 비교 및 평가)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.1-8
    • /
    • 2010
  • A digital phase wrapping modulation (DPM) open-loop polar transmitter can be efficiently applied to a wideband orthogonal frequency division multiplexing (OFDM) communication system by converting in-phase and quadrature signals to envelope and phase signals and then employing the signal mapping process. This mapping process is very similar to quantization in a general communication system, and when taking into account the error that appears during mapping process, one can replace the coordinates rotation digital computer (CORDIC) algorithm in the coordinate conversion part with the Taylor series approximation method. In this paper, we investigate the application of the Taylor series approximation to the cartesian to polar coordinate conversion part of a DPM polar transmitter for wideband OFDM systems. The conventional approach relies on the CORDIC algorithm. To achieve efficient application, we perform computer simulation to measure mean square error (MSE) of the both approaches and find the minimum approximation order for the Taylor series approximation compatible to allowable error of the CORDIC algorithm in terms of hardware design. Furthermore, comparing the processing speeds of the both approaches in the implementation with FPGA reveals that the Taylor series approximation with lower order improves the processing speed in the coordinate conversion part.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

Fingerprint Images Registration Method by Recursive Ridge Mapping (점진적 융선 정합을 통한 지문 영상 정렬 방법)

  • Choi, Kyoung-Taek;Choi, Hee-Seung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1007-1010
    • /
    • 2005
  • This paper presents a fingerprint image registration method. In the fingerprint system, the insufficiency of mutual information between a template and a query fingerprint is one of major factors to deteriorate recognition performance. To overcome this problem, we need to register multiple impressions and integrate their information. Our method matches the ridges from multiple impressions recursively and then registers the impressions to minimize the registration error calculated from the Distance map. Our method use regularized TPS model as the transformation model to compensate for the plastic deformation. We compare our method with 3 prior arts (ICP, Distance Map, Ross's method). Our registration error and its' variance is the smallest and also the average registration error is below 3 pixels.

  • PDF

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.

APPROXIMATING COMMON FIXED POINTS OF ONE-STEP ITERATIVE SCHEME WITH ERROR FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS

  • Saluja, Gurucharan Singh;Nashine, Hemant Kumar
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.429-440
    • /
    • 2010
  • In this paper, we study a new one-step iterative scheme with error for approximating common fixed points of non-self asymptotically nonexpansive in the intermediate sense mappings in uniformly convex Banach spaces. Also we have proved weak and strong convergence theorems for above said scheme. The results obtained in this paper extend and improve the recent ones, announced by Zhou et al. [27] and many others.

Network Coding Scheme using Orthogonality for Two-Way Relay Channel (양방향 중계 채널에서의 직교성을 이용한 네트워크 부호화 기법)

  • Ok, Jun-Ho;Lim, Jin-Soo;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.170-174
    • /
    • 2011
  • We introduce the network coding which cooperative communication for two-way relay channel. We propose a new network coding scheme using orthogonality for cooperative communication system. The proposed network coding scheme via orthogonal mapping shows better BER performance because proposed scheme weakens error propagation which is disadvantage of DF scheme. And proposed scheme maintains same throughput compared to conventional scheme.